基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A new method for the denoising,extraction and tumor detection on MRI images is presented in this paper.MRI images help physicians study and diagnose diseases or tumors present in the brain.This work is focused towards helping the radiologist and physician to have a second opinion on the diagnosis.The ambiguity of Magnetic Resonance(MR)image features is solved in a simpler manner.The MRI image acquired from the machine is subjected to analysis in the work.The real-time data is used for the analysis.Basic preprocessing is performed using various filters for noise removal.The de-noised image is segmented,and the feature extractions are performed.Features are extracted using the wavelet transform.When compared to other methods,the wavelet transform is more suitable for MRI image feature extraction.The features are given to the classifier which uses binary tree support vectors for classification.The classification process is compared with conventional methods.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Machine Learning Approach for MRI Brain Tumor Classification
来源期刊 计算机、材料和连续体(英文) 学科 医学
关键词 MRI image brain PATHOLOGY K-Means ALGORITHM Feature extraction WAVELET TRANSFORM SVM Neural network K nearest algorithm.
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 91-108
页数 18页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MRI
image
brain
PATHOLOGY
K-Means
ALGORITHM
Feature
extraction
WAVELET
TRANSFORM
SVM
Neural
network
K
nearest
algorithm.
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导