基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
SAR图像舰船尾迹检测不仅可用于反演运动舰船的航速航向信息,也有助于发现弱小舰船目标.然而现有舰船尾迹检测方法一般仅适用于简单海况背景下的SAR图像,复杂海况背景下的检测效果难以满足应用需求.本文提出一种基于形态成分分析与多字典学习的复杂背景舰船尾迹检测方法.该方法针对海况背景的复杂多变性以及舰船尾迹类型的有限性,通过离线学习方式构建海面纹理字典,通过解析方式构建尾迹结构字典并迭代更新,将图像分解为包含舰船尾迹的结构成分与包含海面背景的纹理成分,利用剪切波变换对结构成分高频系数重构以增强结构成分,并通过Radon变换对增强后的结构成分进行尾迹线检测.实验结果表明,本文所提方法对于复杂背景SAR图像舰船尾迹检测的效果明显优于现有方法.
推荐文章
基于相对全变分的复杂背景SAR图像舰船尾迹检测
合成孔径雷达
舰船尾迹检测
相对全变分
剪切波变换
Radon变换
基于峰值点形态信息的SAR图像舰船尾迹检测算法
SAR图像
尾迹检测
Radon变换
连续小波变换
特征空间
决策
基于RetinaNet的SAR图像舰船目标检测
合成孔径雷达(SAR)图像
舰船目标检测
深度学习
RetinaNet
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于形态字典学习的复杂背景SAR图像舰船尾迹检测
来源期刊 自动化学报 学科
关键词 SAR图像 舰船尾迹检测 形态成分分析 字典学习 剪切波变换
年,卷(期) 2017,(10) 所属期刊栏目 论文与报告
研究方向 页码范围 1713-1725
页数 13页 分类号
字数 10184字 语种 中文
DOI 10.16383/j.aas.2017.c160274
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 肖创柏 北京工业大学计算机学院 84 661 12.0 24.0
2 孙卫东 清华大学电子工程系 52 471 10.0 20.0
3 禹晶 北京工业大学计算机学院 21 218 7.0 14.0
4 杨国铮 清华大学电子工程系 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (61)
参考文献  (26)
节点文献
引证文献  (5)
同被引文献  (13)
二级引证文献  (0)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(5)
  • 参考文献(1)
  • 二级参考文献(4)
1991(4)
  • 参考文献(1)
  • 二级参考文献(3)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(5)
  • 参考文献(1)
  • 二级参考文献(4)
1996(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(3)
  • 参考文献(2)
  • 二级参考文献(1)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2004(3)
  • 参考文献(3)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(5)
  • 参考文献(5)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SAR图像
舰船尾迹检测
形态成分分析
字典学习
剪切波变换
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导