针对某型MEMS陀螺随机误差较大、精度不高的问题,通过时间序列分析法,建立自回归滑动平均 ARMA(Auto-Regressive and Moving Average)模型,采用ARMA(2,1)模型将预处理后的MEMS陀螺随机误差进行建模.设计基于ARMA模型的经典Kalman滤波器.静态试验和恒定速率试验结果表明在经典Kalman滤波器作用下,静态试验下其均值与均方差下降32.62%和66.31%;恒定速率试验下,其均值有明显的降低,其均方差减小了一个数量级.针对经典Kalman滤波器不能解决振动试验中大振幅时滤波发散问题,提出一种新的自适应Kalman滤波法,通过寻找合适的标定因子s解决滤波发散问题.振动试验结果表明,当振幅为100°时,滤波后的均值和均方差分别下降8.25%和8.36%.