基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对伴随车辆检测这一新兴的智能交通应用,在一种特殊的流式时空大数据——车牌识别流式大数据(ANPR)下,重新定义了Platoon伴随模式,提出PlatoonFinder算法,即时地在车牌识别数据流上挖掘Platoon伴随模式.主要贡献包括:第一,将Platoon伴随模式发现问题映射为数据流上的带有时空约束的频繁序列挖掘问题,与传统频繁序列挖掘算法仅考虑序列元素之间位置关系不同,该算法能够在频繁序列挖掘的过程中有效处理序列元素之间复杂的时空约束关系;第二,该算法融入了伪投影等性能优化技术,针对数据流的特点进行了性能优化,能够有效应对车牌识别流式大数据的速率和规模,从而实现车辆Platoon伴随模式的即时发现通过在真实车牌识别数据集上的实验分析表明:PlatoonFinder算法的平均延时显著低于经典的Aprior和PrefixSpan等频繁模式挖掘算法,也低于真实情况下交通摄像头的车牌识别最小时间间隔.因此,所提出的算法可以有效地发现伴随车辆组及其移动模式.
推荐文章
基于车牌识别流数据的伴随车辆发现算法
智能交通系统
车牌自动识别流数据
伴随车辆组
SparkStreaming并行框架
DStream模型
Eclat算法
基于视频流的车牌识别研究及系统设计
车牌识别
车牌定位
字符分割
字符识别
基于车牌识别技术的车辆管理系统应用
车牌识别技术
车辆管理系统
智能交通
车辆管理技术
基于图像处理技术的车牌识别方法研究
图像处理技术
车牌识别系统
数字形态学
直接分割法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于车牌识别流数据的车辆伴随模式发现方法
来源期刊 软件学报 学科 工学
关键词 流式时空大数据 大数据分析 伴随模式 频繁序列挖掘
年,卷(期) 2017,(6) 所属期刊栏目 大数据时代软件工程专题
研究方向 页码范围 1498-1515
页数 18页 分类号 TP311
字数 14181字 语种 中文
DOI 10.13328/j.cnki.jos.005220
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (1)
参考文献  (14)
节点文献
引证文献  (8)
同被引文献  (19)
二级引证文献  (4)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(6)
  • 引证文献(5)
  • 二级引证文献(1)
2019(5)
  • 引证文献(2)
  • 二级引证文献(3)
研究主题发展历程
节点文献
流式时空大数据
大数据分析
伴随模式
频繁序列挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导