基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
某区域内电力用户的用电行为往往会影响该区域电力公司的负荷调度以及分时电价等重要问题的决策.为使得这些决策更符合该区域的实际情况,必须对该区域的用电特征进行分析.针对这一问题,提出了一种基于聚类算法的区域用电特征分析方法.采用模糊C均值算法并结合K-means算法,按照某区域的电力用户分布情况,将数据样本聚类为居民区电力用户、商业区电力用户和工业区电力用户3个类簇,并结合该地区实际用电情况,对得到的类簇负荷曲线进行了分析,得出了该区域不同类型电力用户的用电特征.
推荐文章
优化的核模糊C均值聚类算法
模糊C均值聚类
核函数
蝙蝠算法
佳点集
速度权重
截集型特征加权模糊C-均值聚类算法
特征加权
稳健聚类
截集
特征提取
基于改进QPSO的模糊C-均值聚类算法
模糊C-均值聚类
量子粒子群优化
聚类分析
量子门更新策略
基于QPSO的模糊C均值聚类算法
量子粒子群算法
粒子群算法
模糊C均值聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于模糊C均值聚类算法的区域用电特征分析
来源期刊 上海电力学院学报 学科 工学
关键词 模糊C均值聚类 K-means算法 负荷曲线 用电行为 特征分析
年,卷(期) 2017,(2) 所属期刊栏目 计算机技术
研究方向 页码范围 196-200,209
页数 6页 分类号 TP181|TM714
字数 3926字 语种 中文
DOI 10.3969/j.issn.1006-4729.2017.02.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 雷景生 上海电力学院计算机科学与技术学院 32 203 7.0 13.0
2 余修成 上海电力学院计算机科学与技术学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (167)
共引文献  (233)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(9)
  • 参考文献(1)
  • 二级参考文献(8)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(10)
  • 参考文献(1)
  • 二级参考文献(9)
2011(17)
  • 参考文献(0)
  • 二级参考文献(17)
2012(22)
  • 参考文献(1)
  • 二级参考文献(21)
2013(34)
  • 参考文献(1)
  • 二级参考文献(33)
2014(11)
  • 参考文献(2)
  • 二级参考文献(9)
2015(18)
  • 参考文献(2)
  • 二级参考文献(16)
2016(5)
  • 参考文献(3)
  • 二级参考文献(2)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
模糊C均值聚类
K-means算法
负荷曲线
用电行为
特征分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海电力大学学报
双月刊
2096-8299
31-2175/TM
大16开
上海市平凉路2103号
1980
chi
出版文献量(篇)
2781
总下载数(次)
10
总被引数(次)
11104
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导