针对传统配准方法准确度低、速度慢的问题,提出了基于改进SIFT-ICP算法的彩色植株点云配准方法.首先采用Kinect获取不同视角下植株彩色图像和深度图像合成原始植株彩色点云,通过预处理提取原始点云植株信息,对植株点云进行尺度不变特征变换(SIFT)的特征点检测,得到点云配准关键点,再对关键点进行自适应法线估计,然后求取关键点的快速点特征直方图(FPFH),通过采样一致性(SAC-IA)初始配准方法改进点云间初始位置关系,最后利用Nanoflann加速最近点迭代(ICP)算法完成精确配准.试验结果表明,改进SIFT-ICP算法可以大幅度提高点云配准的准确性和快速性,其中对应点间平均欧氏距离小于7 mm,配准时间小于30 s.