原文服务方: 计算机应用研究       
摘要:
针对传统迁移学习聚类算法因单一源域到单一目标域且两者类别数必须一致的约束而达不到良好的聚类效果问题,提出了一种跨源域学习的聚类算法.该算法具有三大优点:a)仅扩大源域数目且取消了源域类别数的限定,算法可以自适应选择源域进行学习,所以算法的迁移学习能够得到较大的提升;b)由于所利用的源域知识不会暴露原数据,所以算法具有良好的源域数据隐私保护性;c)通过调节平衡参数可以使算法退化为传统的聚类算法,因此该算法的聚类性能是有所保障的.通过在模拟数据集和真实数据集上的实验,验证了该算法较之现有迁移学习聚类算法具有更好的迁移能力,且聚类性能及鲁棒性也有较大的提升.
推荐文章
中心约束的跨源学习可能性C均值聚类算法
迁移学习
类中心约束
可能性C均值算法
基于 BA 的模糊聚类算法研究
蝙蝠算法
模糊C均值聚类
BAFCM
优化
面向主动学习的模糊核聚类采样算法
高斯核函数
聚类分析
采样
主动学习
分类
基于模糊聚类的小波域数字图像水印算法
数字水印
人眼视觉系统
模糊聚类
小波域
图像局部相关性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 具备跨源域学习能力的模糊聚类算法研究
来源期刊 计算机应用研究 学科
关键词 迁移学习 跨源域学习 隐私保护 鲁棒性
年,卷(期) 2017,(2) 所属期刊栏目 算法研究探讨
研究方向 页码范围 357-360,408
页数 5页 分类号 TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2017.02.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘渊 江南大学数字媒体学院 235 1325 17.0 25.0
2 吴文鹏 江南大学数字媒体学院 2 20 1.0 2.0
3 徐雁飞 江南大学数字媒体学院 4 25 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (15)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
迁移学习
跨源域学习
隐私保护
鲁棒性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导