作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着社会发展,汽车已经成为家庭的重要出行工具.汽车运行时间越长,故障发生率越高,不利于人们的生命健康安全.因此,利用现代模式识别、机器学习等技术构建一个汽车故障率预测模型,及时发现汽车运行故障,以便能够保证汽车以及乘用人的生命安全.本文详细地分析了BP神经网络的基本理论和概念,同时将其应用到汽车故障率预测中,可以提高故障率预测的准确度.
推荐文章
基于BP神经网络的设备故障率获取
可靠性评估
故障率
神经网络
基于GRNN神经网络的ADS-B系统故障率预测
ADS-B系统
GRNN神经网络
故障率预测
故障预测模型
BP神经网络预测全国私人汽车拥有量
预测
MATLAB
BP算法
神经网络
私人汽车
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的汽车故障率预测研究
来源期刊 科学家 学科 交通运输
关键词 BP神经网络 汽车故障率 神经元 梯度下降
年,卷(期) 2017,(3) 所属期刊栏目 科学发展创新
研究方向 页码范围 63-64
页数 2页 分类号 U2
字数 1696字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蓝天宇 河海大学能源与电气学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (16)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
汽车故障率
神经元
梯度下降
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科学家
月刊
1673-9671
10-1135/N
大16开
北京市朝阳区东土城路8号
2013
chi
出版文献量(篇)
18483
总下载数(次)
23
总被引数(次)
10824
论文1v1指导