基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人脸识别作为目前最方便的生物特征识别技术,被应用到了很多重要的领域.但是,由于光照以及姿态等因素的影响,使得人脸识别的精度降低,造成人脸识别技术在实际应用中的局限性.针对姿态以及光照因素对人脸的影响,提出一种基于深度学习的人脸扭正算法.该算法将对齐后的人脸图像首先用深度卷积网络自动地提取人脸特征,然后根据提取到的特征得到非正面人脸与正面人脸的映射关系,最后将非正面姿态的人脸扭成正面姿态且处于中性光照下的人脸图像,算法引入了欧式距离与余弦距离两个损失函数来对网络进行优化,进一提高了网络的精度.实验结果表明,该算方法可以有效地实现正面人脸的重构,减少姿态与光照对人脸特征的影响,使人脸识别精度提得到提高.
推荐文章
基于深度学习的大规模人脸图像检索
人脸检索
卷积神经网络
深度学习
由粗到细
基于深度学习的人脸识别算法研究
家庭服务机器人
人脸识别
深度学习
Inception-ResNet-V1
基于SLBP深度信念网络的人脸识别研究
显著局部二值模式
特征提取
深度信念网络
网络训练
深度学习
人脸识别
基于深度迁移学习的人脸识别方法研究
深度学习
人脸识别
迁移学习
不变性
区分性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的人脸图像扭正算法
来源期刊 信息通信 学科 工学
关键词 人脸识别 人脸扭正 深度学习
年,卷(期) 2017,(7) 所属期刊栏目 学术研究
研究方向 页码范围 5-9
页数 5页 分类号 TP391.41
字数 4296字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨鸿波 北京信息科技大学自动化学院 27 82 5.0 7.0
2 李永 北京信息科技大学自动化学院 2 0 0.0 0.0
3 范雪 北京信息科技大学自动化学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (25)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(1)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(11)
  • 参考文献(2)
  • 二级参考文献(9)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
人脸扭正
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息通信
月刊
1673-1131
42-1739/TN
大16开
湖北省武汉市
1987
chi
出版文献量(篇)
18968
总下载数(次)
92
总被引数(次)
34323
论文1v1指导