作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决传统边缘提取算法对噪声敏感和阈值难以选取,边缘清晰度不高以及边缘不平滑等问题,提出了一种基于ICA阈值优化耦合信息熵的边缘提取算法.首先,基于灰度分布模式将图像分成若干子块,并计算每个子块的分段阈值;然后,为了从大量的分段阈值选择合适的阈值,引入了帝国主义竞争(imperialist competitive algorithm,ICA)优化算法,计算图像的最优阈值,根据获得的最优阈值将每个图像子块划分为不同的均匀区域;最后,通过计算每个均匀区域的信息熵,利用信息熵检测所有处于不同均匀区域的边界像素来提取边缘.实验结果表明:与当前常用的边缘提取算法比较,本文算法具有更高的品质因数与边缘连续性,能够抑制过于微小和琐碎的细节,突出有效的边缘信息,边缘定位精度高且平滑连贯,能够准确地提取目标轮廓.
推荐文章
基于阈值优化的图像模糊边缘检测算法
边缘检测
隶属函数
模糊特征平面
模糊增强
阈值优化
基于粒子群优化算法的Kapur熵多阈值图像分割
图像分割
多阈值图像分割
粒子群优化算法
Kapur熵
基于粒子群优化算法和模糊熵的多级阈值图像分割算法
图像分割
粒子群优化算法
模糊熵
香农熵
鲁棒性
目标函数
量子叠加态和信息熵的形态边缘提取算法
数学形态学
量子叠加态
信息熵
边缘检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ICA阈值优化耦合信息熵的边缘提取算法
来源期刊 西南大学学报(自然科学版) 学科 工学
关键词 边缘提取 帝国主义竞争算法 分段阈值 信息熵 灰度分布模式 均匀区域
年,卷(期) 2018,(9) 所属期刊栏目 工程与信息技术
研究方向 页码范围 150-155
页数 6页 分类号 TP391.3
字数 语种 中文
DOI 10.13718/j.cnki.xdzk.2018.09.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭健 厦门海洋职业技术学院信息技术系 7 12 2.0 3.0
2 李智 贵州大学计算机科学与技术学院 17 99 4.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (75)
共引文献  (153)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (12)
二级引证文献  (0)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(12)
  • 参考文献(0)
  • 二级参考文献(12)
2011(12)
  • 参考文献(2)
  • 二级参考文献(10)
2012(9)
  • 参考文献(3)
  • 二级参考文献(6)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
边缘提取
帝国主义竞争算法
分段阈值
信息熵
灰度分布模式
均匀区域
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西南大学学报(自然科学版)
月刊
1673-9868
50-1189/N
大16开
重庆市北碚区天生路2号
1957
chi
出版文献量(篇)
6419
总下载数(次)
17
总被引数(次)
50161
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导