基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 现有的基于邻域嵌入的人脸超分辨率重建算法只利用了低分辨率图像流形空间的几何结构,而忽略了原始高分辨率图像的流形几何结构,不能很好的反映高低分辨率图像流形几何结构的关系.此外,其对同一幅图像中的不同图像块选取固定数目的最近邻域图像块,从而导致重建质量的下降.为了充分利用原始高分辨率图像空间的几何结构信息,提出基于联合局部约束和自适应邻域选择的邻域嵌入人脸超分辨率重建算法.方法 该方法结合待重构图像与低分辨率图像样本库的相似性约束与初始高分辨图像与高分辨率图像样本库的相似性约束,形成约束低分辨率图像块的重构权重,并利用该重构权重估计出高分辨率的人脸图像,同时引入自适应邻域选择的方法.结果 在CAS-PEAL-R1人脸库上的实验结果表明,相较于传统的基于邻域嵌入的人脸超分辨率重建方法,本文算法在PSNR和SSIM上分别提升了0.39 dB和0.02.相较于LSR重建方法,在PSNR和SSIM上分别提升了0.63 dB和0.01;相较于LcR重建方法,在PSNR和SSIM上分别提升了0.36 dB和0.003 2;相较于TRNR重建方法,在PSNR和SSIM上分别提升了0.33 dB和0.001 1.结论 本文所提的重建方法在现有人脸数据库上进行实验,在主观视觉和客观评价指标上均取得了较好的结果,可进一步适用于现实监控视频中人脸图像的高分辨率重建.
推荐文章
基于L1/2正则化和局部纹理约束的人脸超分辨率图像重建
稀疏表示
人脸图像
图像重建
L1/2正则化
局部纹理约束
人脸超分辨率重建中投影空间的选择方法
人脸图像
超分辨率
投影空间
邻域嵌入
基于在线字典学习的人脸超分辨率重建
在线字典学习
超分辨率重建
含噪人脸图像
稀疏编码
一种邻域嵌入超分辨率算法
图像处理
超分辨率
邻域嵌入
硬件
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 联合局部约束的邻域嵌入人脸超分辨率重建
来源期刊 中国图象图形学报 学科 工学
关键词 流形空间 联合局部约束 自适应邻域选择 邻域嵌入 人脸超分辨率重建
年,卷(期) 2018,(6) 所属期刊栏目 图像处理和编码
研究方向 页码范围 792-801
页数 10页 分类号 TP301.6
字数 6207字 语种 中文
DOI 10.11834/jig.170393
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄福珍 上海电力学院自动化工程学院 18 49 3.0 6.0
2 周晨旭 上海电力学院自动化工程学院 2 4 1.0 2.0
3 何林巍 上海电力学院自动化工程学院 2 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (7)
参考文献  (15)
节点文献
引证文献  (3)
同被引文献  (20)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(6)
  • 参考文献(3)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(5)
  • 参考文献(3)
  • 二级参考文献(2)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
流形空间
联合局部约束
自适应邻域选择
邻域嵌入
人脸超分辨率重建
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导