原文服务方: 上海海事大学学报       
摘要:
针对当前船舶自动识别系统(automatic identification system,AIS)数据存在大量错误和缺失的问题,通过匹配AIS数据丢失时间制定完备AIS数据库,采用改进的Hausdorff距离公式融合轨迹空间相似度与船舶航行速度相似度,采用相似轨迹作为最小二乘支持向量机(least squares support vector machine,LSSVM)算法的输入样本,通过数据训练得到的回归模型对AIS数据进行修复.采用实际数据进行验证.结果显示,本文提出的基于粒子群优化(particle swarm optimization,PSO)的LSSVM算法能够准确还原AIS数据.结果可以提高AIS数据的连续性和完整性.
推荐文章
基于最小二乘支持向量机的多属性决策
多属性决策
最小二乘支持向量机
效用函数
基于MapReduce的最小二乘支持向量机回归模型
最小二乘支持向量机
MapReduce编程模式
局部多模型方法
加速比
可扩展性
基于最小二乘支持向量机的双模控制
预测控制
最小二乘支持向量机
稳定性
李亚普诺夫方法
双模控制
稀疏最小二乘支持向量机及其应用研究
最小二乘支持向量机
核偏最小二乘辨识
智能建模
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最小二乘支持向量机的AIS数据修复方法
来源期刊 上海海事大学学报 学科
关键词 AIS数据 数据修复 最小二乘支持向量机(LSSVM) 粒子群优化(PSO)算法
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 82-89
页数 8页 分类号 U675.7
字数 语种 中文
DOI 10.13340/j.jsmu.2018.04.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王永明 大连海事大学航海学院 2 4 1.0 2.0
2 桑凌志 中国交通通信信息中心交通安全应急信息技术国家工程实验室 7 29 4.0 5.0
3 刘兴龙 闽江学院物理与电子信息工程学院 4 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (48)
参考文献  (14)
节点文献
引证文献  (4)
同被引文献  (30)
二级引证文献  (1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(8)
  • 参考文献(1)
  • 二级参考文献(7)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(9)
  • 参考文献(2)
  • 二级参考文献(7)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(4)
  • 引证文献(3)
  • 二级引证文献(1)
研究主题发展历程
节点文献
AIS数据
数据修复
最小二乘支持向量机(LSSVM)
粒子群优化(PSO)算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海海事大学学报
季刊
1672-9498
31-1968/U
大16开
1979-01-01
chi
出版文献量(篇)
1795
总下载数(次)
0
总被引数(次)
13718
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导