基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了估计出曲线函数的参数,提出了一种特定神经网络应用于图形曲线的函数拟合,并针对故障电流信号中包含的指数衰减直流分量降低继电保护操作的精度和效率等问题,构造了一种适应衰减直流分量估计的神经网络模型(decaying DC neural network,DDCNN),推导出基于Levenberg-Marquardt算法的网络权值自适应学习方法.该模型与包含衰减直流分量故障电流信号模型的数学表达式一致,在迭代求解神经网络的权值后,可直接由权值估计出衰减直流分量的所有参数.实验仿真结果及对比分析表明,本文算法能获得比现有算法更高的估计精度,且其计算代价能够满足应用需求.
推荐文章
一类非线性系统的稳定神经网络自适应控制
非线性系统
神经网络
自适应控制
基于神经网络的通用模型自适应控制
通用模型控制
复合正交神经网络
二阶系统
自适应逆控制
基于BP神经网络修正的自适应Singer模型
Singer 模型
卡尔曼滤波
Burg 算法
BP 神经网络
基于神经网络的模型参考自适应控制方法
控制理论
神经网络
模型参考自适应控制
BP算法
误差函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 适应衰减直流分量估计的特定神经网络模型
来源期刊 扬州大学学报(自然科学版) 学科 工学
关键词 衰减直流分量 参数估计 神经网络模型 Levenberg-Marquardt算法
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 50-54
页数 5页 分类号 TP183
字数 语种 中文
DOI 10.19411/j.1007-824x.2018.02.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 闫敬文 33 404 10.0 19.0
2 肖秀春 1 0 0.0 0.0
3 陈柏桃 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (3)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
衰减直流分量
参数估计
神经网络模型
Levenberg-Marquardt算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
扬州大学学报(自然科学版)
季刊
1007-824X
32-1472/N
大16开
江苏省扬州市大学南路88号
28-48
1974
chi
出版文献量(篇)
1577
总下载数(次)
2
论文1v1指导