基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
大规模图像检索具有广泛的应用前景,其核心在于图像特征提取和高效相似性计算.深度学习技术在图像特征提取具有较强的特征表示能力,同时哈希技术在高维数据近似计算方面具有较好的性能.目前,基于哈希学习的技术在大规模图像检索及相似性查询方面获得了广泛的研究和应用.本文结合卷积神经网络和哈希技术实现商标图像检索,通过深度学习技术提取商标图像特征,使用位哈希对数据对象编码,在海明空间折中查询的质量和效率.基于卷积神经网络模型,提出了深度哈希算法,并研究了损失函数和该数据集上的优化器选择,通过获取符合哈希编码规范的位编码实现对在二元空间对商标图像数据快速检索,该方法分为离线深度哈希学习和在线查询两个阶段.在真实商标数据集上进行实验,实验结果表明,本文方法能够在商标数据集上获得较高质量的位编码,并具有较高的检索精确度和在线查询效率.
推荐文章
简化SIFT算法及其在商标图像检索中的应用
商标图像
SIFT特征
图像匹配
图像检索
随机抽样一致性算法
面向Web图像检索的基于语义迁移的无监督深度哈希
语义迁移
图像哈希
Web图像检索
深度学习
基于深度学习的图像检索研究
图像检索
深度学习
卷积神经网络
Caffe
主成分分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度哈希学习的商标图像检索研究
来源期刊 华东师范大学学报(自然科学版) 学科 工学
关键词 深度学习 哈希学习 商标检索 卷积神经网络 位编码
年,卷(期) 2018,(5) 所属期刊栏目 新型互联网应用技术
研究方向 页码范围 172-182
页数 11页 分类号 TP391
字数 5956字 语种 中文
DOI 10.3969/j.issn.1000-5641.2018.05.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 顾兴健 南京农业大学信息科学技术学院 10 9 2.0 2.0
2 袁培森 南京农业大学信息科学技术学院 26 73 5.0 8.0
3 张勇 南京工程学院基础部 8 0 0.0 0.0
4 李美玲 南京农业大学信息科学技术学院 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (90)
共引文献  (477)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(8)
  • 参考文献(0)
  • 二级参考文献(8)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(6)
  • 参考文献(2)
  • 二级参考文献(4)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(14)
  • 参考文献(3)
  • 二级参考文献(11)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
哈希学习
商标检索
卷积神经网络
位编码
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华东师范大学学报(自然科学版)
双月刊
1000-5641
31-1298/N
16开
上海市中山北路3663号
4-359
1955
chi
出版文献量(篇)
2430
总下载数(次)
5
总被引数(次)
17499
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导