基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
显著目标检测旨在快速地辨别自然图像的显著区域.为了更完整地将图像的显著区域与背景分离,根据低秩恢复理论提出基于迹表示和正则化的显著目标检测算法.首先将核范数替换为矩阵的迹表示以获取更低秩的解;然后在模型中加入拉普拉斯正则化项,减少稀疏矩阵和低秩矩阵的联系;最后将位置、颜色和边界连接先验整合成权重矩阵,融入到矩阵分解模型中.在Matlab平台下的MSRA1K,SOD,ECSSD和iCoseg这4个数据集上与13种算法进行比较的实验结果表明,该算法优于其他算法.
推荐文章
超像素和阈值分割相结合的显著目标检测算法
显著目标检测
超像素分割
阈值分割
感兴趣区域
基于低秩矩阵二元分解的快速显著性目标检测算法
显著性目标检测
低秩矩阵双因子分解
分层稀疏正则化
交替方向法
基于局部显著度的机动弱小目标检测算法
红外弱小目标检测
变速运动目标
基于块显著度的局部对比检测
空间辐射能量累积
基于颜色和纹理特征的显著性检测算法
模式识别
显著性检测
颜色对比度
纹理特征
二维信息熵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于迹表示和正则化的显著目标检测算法
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 迹表示 正则化 权重矩阵 低秩恢复 显著目标检测
年,卷(期) 2018,(11) 所属期刊栏目 图形与可视化
研究方向 页码范围 2018-2025
页数 8页 分类号 TP391.41
字数 5554字 语种 中文
DOI 10.3724/SP.J.1089.2018.17113
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 金忠 南京理工大学计算机科学与工程学院 72 1142 17.0 31.0
5 马晓迪 南京理工大学计算机科学与工程学院 4 1 1.0 1.0
9 吴茜茵 南京理工大学计算机科学与工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
迹表示
正则化
权重矩阵
低秩恢复
显著目标检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
总被引数(次)
94943
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导