基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种基于聚类的启发式选择性集成学习算法.集成学习通过组合多个弱分类器获得比单一分类器更好的学习效果,把多个弱分类器提升为一个强分类器.理论上来说弱分类器的个数越多,组合的模型效果越好,但是随着弱分类器的增多,模型的训练时间和复杂度也随之递增.通过聚类的方法去除相似的弱分类器,一方面有效降低模型的复杂度,另一方面选出差异性较大的弱分类器作为候选集合.之后采用启发式的选择性集成算法,对弱分类器进行有效的组合,从而提升模型的分类性能.同时采用并行的集成策略,提高集成学习选取最优分类器子集效率,可以有效地减少模型的训练时间.实验结果表明,该算法较传统方法在多项指标上都有着一定的提升.
推荐文章
基于选择性聚类集成的图像目标分类方法
聚类集成
匈牙利算法
近邻传播
图像目标分类
一种基于Rough集的启发式人工选择算法
粗糙集
遗传算法
人工选择算法
传统启发式教学与现代启发式教学之对比研究
传统启发式
现代启发式
对比研究
论启发式教学
启发
教学
形式
模式
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 HSEC:基于聚类的启发式选择性集成
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 集成学习 选择性集成学习 聚类 降维
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 116-123
页数 8页 分类号 TP311
字数 4006字 语种 中文
DOI 10.13232/j.cnki.jnju.2018.01.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 洪志令 厦门大学软件学院 7 49 3.0 7.0
2 郑丽容 厦门大学计算机科学系 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (164)
共引文献  (324)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1908(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(2)
  • 参考文献(0)
  • 二级参考文献(2)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(4)
  • 参考文献(0)
  • 二级参考文献(4)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(5)
  • 参考文献(0)
  • 二级参考文献(5)
1997(9)
  • 参考文献(0)
  • 二级参考文献(9)
1998(5)
  • 参考文献(1)
  • 二级参考文献(4)
1999(7)
  • 参考文献(0)
  • 二级参考文献(7)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(6)
  • 参考文献(1)
  • 二级参考文献(5)
2002(10)
  • 参考文献(1)
  • 二级参考文献(9)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(11)
  • 参考文献(1)
  • 二级参考文献(10)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(12)
  • 参考文献(2)
  • 二级参考文献(10)
2009(14)
  • 参考文献(1)
  • 二级参考文献(13)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(11)
  • 参考文献(1)
  • 二级参考文献(10)
2012(18)
  • 参考文献(0)
  • 二级参考文献(18)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
集成学习
选择性集成学习
聚类
降维
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导