基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Recently,many researchers have concentrated on using neural networks to learn features for Distant Supervised Relation Extraction(DSRE).These approaches generally use a softmax classifier with cross-entropy loss,which inevitably brings the noise of artificial class NA into classification process.To address the shortcoming,the classifier with ranking loss is employed to DSRE.Uniformly randomly selecting a relation or heuristically selecting the highest score among all incorrect relations are two common methods for generating a negative class in the ranking loss function.However,the majority of the generated negative class can be easily discriminated from positive class and will contribute little towards the training.Inspired by Generative Adversarial Networks(GANs),we use a neural network as the negative class generator to assist the training of our desired model,which acts as the discriminator in GANs.Through the alternating optimization of generator and discriminator,the generator is learning to produce more and more discriminable negative classes and the discriminator has to become better as well.This framework is independent of the concrete form of generator and discriminator.In this paper,we use a two layers fully-connected neural network as the generator and the Piecewise Convolutional Neural Networks(PCNNs)as the discriminator.Experiment results show that our proposed GAN-based method is effective and performs better than state-of-the-art methods.
推荐文章
基于情感计算的E-Learning模型框架
情感计算
E-Learning
和谐人机环境
Blended Learning在教师教育中的应用探析
Blended Learning
教师教育
校本培训
反思
e-Learning用户心理体验量化评价研究
量化评价
用户心理体验
层次分析法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Adversarial Learning for Distant Supervised Relation Extraction
来源期刊 计算机、材料和连续体(英文) 学科 数学
关键词 Relation extraction GENERATIVE adversarial NETWORKS DISTANT supervision PIECEWISE convolutional neural NETWORKS pair-wise RANKING loss
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 121-136
页数 16页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Relation
extraction
GENERATIVE
adversarial
NETWORKS
DISTANT
supervision
PIECEWISE
convolutional
neural
NETWORKS
pair-wise
RANKING
loss
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导