基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对获取的高光谱图像空间分辨率较低的问题,对高光谱图像的分辨率增强方法进行分析研究,提出一种超分辨率方法.该方法使用非参数贝叶斯稀疏表示方法,将高分辨率图像与低空间分辨率的高光谱图像融合.首先,从高光谱图像中推测出材料反射光谱的概率分布以及一组伯努利分布;其次,通过贝叶斯字典学习得到光谱字典,并根据高分辨率图像的频谱量化进行字典变换;然后,利用变换后的字典计算高分辨率图像的稀疏编码矩阵;最后,将学习的字典与稀疏编码矩阵联合重建高分辨率的高光谱图像.实验结果表明,无论是主观视觉上的细节信息重建,还是客观指标的均方根误差以及峰值信噪比等,该方法均优于传统方法,与相似的稀疏表示方法、矩阵分解方法以及耦合光谱解混合方法相比,重建效果也有所提升,验证了有效性.
推荐文章
基于稀疏贝叶斯估计的单图像超分辨率算法
单图像超分辨率
超分辨率
贝叶斯估计
回归
稀疏表示
采用共享空间稀疏表示的单幅图像超分辨率方法
超分辨率
稀疏表示
典型相关分析
自然图像先验
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
基于稀疏表示的图像超分辨率重建算法设计
超分辨率重建
稀疏表示
字典学习
图像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 贝叶斯稀疏表示高光谱图像超分辨率方法
来源期刊 计算机科学与探索 学科 工学
关键词 超分辨率 高光谱图像 贝叶斯稀疏表示 字典学习 稀疏编码
年,卷(期) 2018,(12) 所属期刊栏目 人工智能与模式识别
研究方向 页码范围 1987-1995
页数 9页 分类号 TP391|TN911.73
字数 5991字 语种 中文
DOI 10.3778/j.issn.1673-9418.1711039
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄伟 中国电子科技集团公司第二十七研究所 33 50 4.0 4.0
2 徐国明 8 13 3.0 3.0
4 许蒙恩 2 5 2.0 2.0
7 黄勤超 2 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (2)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (2)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(8)
  • 参考文献(2)
  • 二级参考文献(6)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超分辨率
高光谱图像
贝叶斯稀疏表示
字典学习
稀疏编码
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导