基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高岩心三维图像分辨率,将调整的锚点邻域回归算法(A+)扩展为三维图像超分辨率重建,提出三维高频修正A+算法.该算法利用已有的高分辨率(HR)岩心三维CT图像和高频修正信息训练高低分辨率字典、高频修正字典、映射矩阵和高频修正映射矩阵.重建时,对每个输入的三维低分辨率(LR)特征块搜索匹配的字典原子以及相应的映射矩阵和高频修正矩阵,通过LR特征向量分别与映射矩阵和高频映射矩阵相乘,直接将三维LR特征映射到HR空间.针对多组岩心三维CT图像进行实验,与其他三维超分辨率算法进行比较.实验结果表明,该算法具有较高的峰值信噪比和结构相似度.
推荐文章
多深度相机标定下稀疏纹理图像三维超分辨率重构
多深度
相机标定
稀疏纹理
图像
三维重构
基于神经网络学习的锥形束CT图像超分辨率重建算法
锥形束CT
卷积神经网络
降噪
超分辨率重建
基于MAP算法的图像超分辨率重建
超分辨率
图像重建
最大后验概率
基于稀疏表示的图像超分辨率重建算法设计
超分辨率重建
稀疏表示
字典学习
图像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 岩心三维CT图像超分辨率重建
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 岩心三维CT图像 超分辨率重建 高频修正 字典训练 映射矩阵
年,卷(期) 2018,(7) 所属期刊栏目 自动化技术
研究方向 页码范围 1294-1301
页数 8页 分类号 TP391
字数 5277字 语种 中文
DOI 10.3785/j.issn.1008-973X.2018.07.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何小海 四川大学电子信息学院 395 2334 21.0 30.0
2 滕奇志 四川大学电子信息学院 198 900 14.0 21.0
3 卿粼波 四川大学电子信息学院 181 565 11.0 15.0
4 李征骥 四川大学电子信息学院 3 8 2.0 2.0
5 张廷蓉 四川大学电子信息学院 5 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
岩心三维CT图像
超分辨率重建
高频修正
字典训练
映射矩阵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导