基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了准确地预测乘客对网约车的需求量,指向性地提高部分地区的运力,让乘客更加容易预约到网约车,从而提升乘客的出行体验,通过对网约车需求量的变化规律和影响因素进行灰色关联度分析,选取网约车历史需求量、天气类型和道路拥堵比例作为影响因子,利用量子行为粒子群(QPSO)算法优化径向基(RBF)神经网络的网络权值、中心和基宽来构建QPSO_RBF神经网络预测模型.实际运营数据结果表明,QPSO_RBF神经网络预测模型具有可行性和有效性,其预测精度优于普通RBF神经网络模型的,且无论是改进的RBF神经网络还是普通RBF神经网络,综合考虑历史需求量、天气类型和道路拥堵比例作为影响因子的预测模型均优于只考虑历史需求量的预测模型.
推荐文章
基于支持向量机的旅游需求量预测模型
旅游需求量
预测模型
支持向量机
灰色模型
参数优化
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
基于RBF神经网络的货运量预测模型
货运量
RBF神经网络
预测模型
基于RBF神经网络水泥强度预测模型的研究
RBF神经网络
水泥强度
预测模型
MATLAB
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于QPSO_RBF神经网络的网约车需求量预测模型
来源期刊 广西大学学报(自然科学版) 学科 交通运输
关键词 交通需求预测 量子行为粒子群算法 径向基 QPSO_RBF神经网络 网约车
年,卷(期) 2018,(2) 所属期刊栏目 交通工程
研究方向 页码范围 700-709
页数 10页 分类号 U491.1
字数 5038字 语种 中文
DOI 10.13624/j.cnki.issn.1001-7445.2018.0700
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 温惠英 华南理工大学土木与交通学院 124 952 16.0 25.0
2 林龙 华南理工大学土木与交通学院 4 27 3.0 4.0
3 漆巍巍 华南理工大学土木与交通学院 6 31 3.0 5.0
4 黎景壮 华南理工大学土木与交通学院 3 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (315)
参考文献  (17)
节点文献
引证文献  (2)
同被引文献  (18)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(7)
  • 参考文献(1)
  • 二级参考文献(6)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(4)
  • 参考文献(3)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通需求预测
量子行为粒子群算法
径向基
QPSO_RBF神经网络
网约车
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广西大学学报(自然科学版)
双月刊
1001-7445
45-1071/N
大16开
广西南宁市大学路100号广西大学西校园学报编辑部
28832转3
1976
chi
出版文献量(篇)
4586
总下载数(次)
8
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导