基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人脸识别在实际应用中,往往存在无法获取足够多的训练样本的情况,而在小样本情况下,协作表示的识别性能会受到严重影响.多尺度块协作表示算法能有效集成不同尺度下的分类结果,但其分类框架中子块的计算是相互独立的,忽略了块之间的结构关系.而局部结构法将图像划分为多个局部区域,每个局部区域的重叠块分布在相同的线性子空间中,该子空间可以反应块之间的结构关系,能提高多尺度块协作表示在小样本下的鲁棒性.因此提出了基于局部结构的多尺度块协同表示算法(Local Structure based Multi-Patch Collaborative Representation,LS_MPCRC),在Yale B和AR人脸库上的实验结果证明,该算法在训练样本数目较少时具有优秀的识别性能.
推荐文章
基于虚拟样本的协同表示人脸识别算法
人脸识别
协同表示
虚拟样本
基于流形的局部加权协从表示人脸识别
局部加权
协从表示
流形投影
人脸识别
计算机视觉
基于SIFT稀疏表示的人脸识别算法
人脸识别
尺度不变特征变换
FisherVector
主成分分析
稀疏表示
稀疏表示人脸识别的关键问题分析
人脸识别
压缩感知
稀疏表示
鲁棒性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于局部结构的多尺度协作表示人脸识别算法
来源期刊 计算机工程与应用 学科 工学
关键词 人脸识别 协作表示 小样本问题 多尺度块协作表示 局部结构
年,卷(期) 2018,(17) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 151-157
页数 7页 分类号 TP391.4
字数 6198字 语种 中文
DOI 10.3778/j.issn.1002-8331.1705-0279
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张建明 长沙理工大学综合交通运输大数据智能处理湖南省重点实验室 25 87 6.0 7.0
5 刘宇凯 长沙理工大学综合交通运输大数据智能处理湖南省重点实验室 2 2 1.0 1.0
9 金晓康 长沙理工大学综合交通运输大数据智能处理湖南省重点实验室 4 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
协作表示
小样本问题
多尺度块协作表示
局部结构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导