基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高语音识别系统的鲁棒性,提出一种基于GBFB(spectro-temporal Gabor filter bank)的声学特征提取方法,并通过分块PCA算法对高维的GBFB特征进行降维处理,最后在多个相同噪音环境对GBFB特征以及常用的GFCC,MF-CC,LPCC等特征进行抗噪性能对比,与GFCC相比GBFB特征的识别率提高了5.35%,与MFCC特征相比提升了7.05%,比LPCC特征识别的基线低9个分贝.实验结果表明,在噪音环境下与传统的GFCC、MFCC以及LPCC等特征相比GBFB特征有更优越的鲁棒性.
推荐文章
噪声鲁棒语音识别研究综述
鲁棒语音识别
语音增强
特征补偿
模型补偿
多种前端滤波器的ZCPA对语音多变性的鲁棒性研究
FIR滤波器
Gammatone(GT)滤波器
Laguerre滤波器
弯折滤波器(WFBs)
过零峰值幅度(ZCPA)
支持向量机(SVM)
基于Gabor小波和模型自适应的鲁棒人脸识别方法
模型补偿
人脸识别
模型自适应
Gabor
联想记忆模型
基于Gabor小波SDF匹配滤波器的人脸识别
人脸识别
小波变换
综合判别函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Gabor滤波的语音识别鲁棒性研究
来源期刊 计算机与现代化 学科 工学
关键词 语音识别 鲁棒性 Gabor滤波 特征提取 GBFB特征
年,卷(期) 2018,(5) 所属期刊栏目 模式识别
研究方向 页码范围 20-24
页数 5页 分类号 TN912.3
字数 3148字 语种 中文
DOI 10.3969/j.issn.1006-2475.2018.05.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 缑新科 兰州理工大学电气工程与信息工程学院 70 350 10.0 14.0
10 徐高鹏 兰州理工大学电气工程与信息工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (53)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(2)
  • 二级参考文献(2)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
语音识别
鲁棒性
Gabor滤波
特征提取
GBFB特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导