基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
脱硫效率的预测对脱硫系统的运行与控制有着重要的指导意义.以国内某660MW机组为例,考虑影响石灰石/石膏湿法烟气脱硫效率的各主要因素,并使用广义回归神经网络(GRNN)建立了脱硫效率预测模型.该模型采用电厂实际运行数据为训练样本,然后另选10组数据用来仿真预测和验证.预测结果表明建立的烟气脱硫效率预测模型的精度要高于传统BP模型,精度达到了99.6%,对实际脱硫系统的安全运行有一定的指导意义.
推荐文章
广义回归神经网络预测加筋土支挡结构高度
神经网络
广义回归神经网络
加筋土支挡结构
设计高度
土工合成材料
基于广义回归网络的动态权重回归型神经网络集成方法研究
神经网络集成
BP网络
动态权重
广义回归神经网络
基于广义回归神经网络的流量矩阵估计
流量矩阵估计
网络流量
广义回归神经网络
马氏距离
广义回归神经网络在非线性系统建模中的应用
广义回归神经网络
均匀设计
非线性系统
建模
稳健性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 广义回归神经网络对脱硫效率的预测
来源期刊 自动化技术与应用 学科 工学
关键词 脱硫效率 广义回归神经网络 预测模型 训练样本 仿真预测
年,卷(期) 2018,(10) 所属期刊栏目 控制理论与应用
研究方向 页码范围 1-3,37
页数 4页 分类号 TP273
字数 1858字 语种 中文
DOI 10.3969/j.issn.1003-7241.2018.10.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李军红 11 34 4.0 4.0
2 刘锁清 19 52 5.0 5.0
3 董森 4 12 3.0 3.0
4 彭伟娟 5 15 3.0 3.0
5 刘少虹 7 16 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (74)
参考文献  (12)
节点文献
引证文献  (3)
同被引文献  (31)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(2)
  • 二级参考文献(4)
2008(6)
  • 参考文献(3)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脱硫效率
广义回归神经网络
预测模型
训练样本
仿真预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化技术与应用
月刊
1003-7241
23-1474/TP
大16开
哈尔滨市开发区汉水路165号
14-37
1982
chi
出版文献量(篇)
8131
总下载数(次)
24
总被引数(次)
36824
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导