基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
双向聚类已成为分析基因表达数据的一种重要工具,可以同时从基因和条件两个方向寻找具有相同表达波动的簇.但双向聚类是一种多目标优化的局部搜索算法,处理繁杂的基因数据时容易陷入局部最优.为提高算法的全局搜索能力,提出了一种多样性选择的量子粒子群双向聚类算法(Diversify-Optional QPSO,DOQPSO).算法首先采用DOQPSO处理基因数据,然后用改进的FLOC算法进行贪心迭代寻找双向聚类,以求得更为理想的结果.算法通过实验仿真,并与FLOC算法和QPSO算法进行比较,结果证明DOQPSO双向聚类算法具有更好的全局寻优能力,且聚类效果更佳.
推荐文章
改进的耗散量子粒子群优化算法及其应用
量子粒子群优化算法
耗散操作算子
函数优化
量子进化算法
混合自适应量子粒子群优化算法
量子粒子群优化算法
收缩—扩张系数
差分策略
Levy飞行策略
基于多样性变异的量子行为粒子群优化算法
量子行为的粒子群优化算法
多样性变异
多样性函数
标准函数
具有学习行为的协同量子粒子群算法
量子粒子群
协同进化
学习行为
收敛
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 采用多样性选择的量子粒子群双向聚类算法
来源期刊 计算机工程与应用 学科 工学
关键词 双向聚类 基因表达数据 量子粒子群算法 多样性选择 FLOC算法
年,卷(期) 2018,(9) 所属期刊栏目 理论与研发
研究方向 页码范围 42-46
页数 5页 分类号 TP301
字数 4438字 语种 中文
DOI 10.3778/j.issn.1002-8331.1701-0353
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李梁 重庆理工大学计算机科学与工程学院 15 242 7.0 15.0
2 陈佳瑜 重庆理工大学计算机科学与工程学院 4 18 2.0 4.0
3 罗云 重庆理工大学计算机科学与工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (20)
参考文献  (13)
节点文献
引证文献  (1)
同被引文献  (8)
二级引证文献  (0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(3)
  • 二级参考文献(2)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
双向聚类
基因表达数据
量子粒子群算法
多样性选择
FLOC算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导