基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在客户关系管理的RFM经典分析法的基础上,根据电子商务的业务分析,提出适合本系统的多指标客户细分法。采用熵值法对各个指标进行权重的赋值,最后使用K-means算法进行客户细分。该文的评价指标除了使用传统聚类算法的类内距离外,还使用了基于分类思想的泛化能力评估,具有一定的实际意义。通过实验验证了本文提出多指标分析法的有效性。
推荐文章
基于消费数据挖掘的多指标客户细分新方法
客户细分
消费行为
数据挖掘
聚类
电信客户细分中基于聚类算法的数据挖掘技术研究
数据挖掘
客户细分
SPSSModeler
K-means算法
微粒群并行聚类在客户细分中的应用
并行聚类
自适应
微粒群优化
电信客户细分
基于加权网络的客户需求聚类方法
加权网络
客户需求
聚类算法
三角模糊数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于聚类的多指标客户细分方法
来源期刊 电脑知识与技术:学术交流 学科 经济
关键词 客户细分 客户关系管理 RFM 聚类
年,卷(期) 2018,(2Z) 所属期刊栏目
研究方向 页码范围 18-21
页数 4页 分类号 F274
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴明礼 北方工业大学计算机学院 24 97 6.0 8.0
2 黄亚非 北方工业大学计算机学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
客户细分
客户关系管理
RFM
聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
电脑知识与技术:学术版2018年第9Z期 电脑知识与技术:学术版2018年第9X期 电脑知识与技术:学术版2018年第9期 电脑知识与技术:学术版2018年第8X期 电脑知识与技术:学术版2018年第8期 电脑知识与技术:学术版2018年第7Z期 电脑知识与技术:学术版2018年第7X期 电脑知识与技术:学术版2018年第7期 电脑知识与技术:学术版2018年第6Z期 电脑知识与技术:学术版2018年第6X期 电脑知识与技术:学术版2018年第6期 电脑知识与技术:学术版2018年第5Z期 电脑知识与技术:学术版2018年第5X期 电脑知识与技术:学术版2018年第5期 电脑知识与技术:学术版2018年第4Z期 电脑知识与技术:学术版2018年第4X期 电脑知识与技术:学术版2018年第4期 电脑知识与技术:学术版2018年第3Z期 电脑知识与技术:学术版2018年第3X期 电脑知识与技术:学术版2018年第3期 电脑知识与技术:学术版2018年第2Z期 电脑知识与技术:学术版2018年第2X期 电脑知识与技术:学术版2018年第2期 电脑知识与技术:学术版2018年第1Z期 电脑知识与技术:学术版2018年第1X期 电脑知识与技术:学术版2018年第12Z期 电脑知识与技术:学术版2018年第12X期 电脑知识与技术:学术版2018年第12期 电脑知识与技术:学术版2018年第11Z期 电脑知识与技术:学术版2018年第11X期 电脑知识与技术:学术版2018年第11期 电脑知识与技术:学术版2018年第10Z期 电脑知识与技术:学术版2018年第10X期 电脑知识与技术:学术版2018年第10期 电脑知识与技术:学术版2018年第1期
论文1v1指导