基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了准确、高效地预测港口物流需求量,提出一种基于BP-RBF神经网络的组合预测模型.考虑到物流需求的非线性变化特点,在建模过程中首先采用BP与RBF两种神经网络方法分别建立单项预测子模型,然后依据各子模型预测结果赋予不同权重进一步构建加权组合预测模型.再以汕头港为例,通过MATLAB软件对港口物流需求量进行仿真预测.结果表明,组合预测模型较单一预测模型具有更高的预测精度,能有效减少出现较大误差的概率,使预测结果更接近于实际情况,可为港口今后物流发展规划提供参考.
推荐文章
基于多因素影响的BP-RBF神经网络渗流预测模型
大坝安全监测
渗流
预测
BP神经网络
RBF神经网络
汾河水库
基于BP-RBF组合神经网络的废气监测盲区SO2浓度预测
BP-RBF组合神经网络
废气监测
监测盲区
SO2浓度预测
基于BP-RBF神经网络的飞机舵机电液伺服加载系统研究
飞机舵机电液伺服加载系统
多余力
BP神经网络
RBF神经网络
基于RBF神经网络的货运量预测模型
货运量
RBF神经网络
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP-RBF神经网络的组合模型预测港口物流需求研究
来源期刊 郑州大学学报(工学版) 学科 工学
关键词 BP神经网络 RBF神经网络 组合模型 预测 港口物流需求
年,卷(期) 2019,(5) 所属期刊栏目
研究方向 页码范围 84-90
页数 7页 分类号 TP183|F552.7
字数 5476字 语种 中文
DOI 10.13705/j.issn.1671-6833.2019.02.025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄翰 华南理工大学软件学院 50 526 11.0 21.0
2 蔡婉贞 汕头职业技术学院经济管理系 3 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (67)
共引文献  (36)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (4)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(4)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(8)
  • 参考文献(1)
  • 二级参考文献(7)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
RBF神经网络
组合模型
预测
港口物流需求
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(工学版)
双月刊
1671-6833
41-1339/T
大16开
河南省郑州市科学大道100号
36-232
1980
chi
出版文献量(篇)
3118
总下载数(次)
0
总被引数(次)
21814
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导