基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 自然场景图像中,特征提取的质量好坏是决定目标检测性能高低的关键因素.大多数检测算法都是利用卷积神经网络(CNN)强大的学习能力来获得目标的先验知识,并根据这些知识进行目标检测.卷积神经网络的低层次特征缺乏特征的代表性,而高层次的特征则对小尺度目标的监测能力弱.方法 利用原始SSD(single shot multiBox detector)网络提取特征图,通过1×1卷积层将提取的特征图统一为256维;通过反卷积操作增加自顶向下特征图的空间分辨率;通过对应元素相加的操作,将两个方向的特征图进行融合.将融合后的特征图采用3×3的卷积核进行卷积操作,减小特征图融合后的混叠效应.根据以上步骤构建具有较强语义信息的特征图,同时保留原有特征图的细节信息;对预测框进行聚合,利用非极大抑制(NMS)实现最终的检测效果.结果 在PASCALVOC 2007和PASCAL VOC 2012数据集上进行实验测试,该模型的mAP(mean average precision)为78.9%和76.7%,相对于经典的SSD算法,分别提高了1.4%和0.9%;此外,本文方法在检测小尺度目标时相较于经典SSD模型mAP提升了8.3%.结论 提出了一种多尺度特征图融合的目标检测算法,以自顶向下的方式扩展了语义信息,构造了高强度语义特征图用于实现精确目标检测.
推荐文章
引入多尺度特征图融合的人脸关键点检测网络
深度学习
人脸关键点检测
热度图融合
关键点热度图
基于特征融合的多尺度窗口产品外观检测方法
机器视觉
质量检测
特征融合
多尺度滑动窗口
支持向量机
一种SAR图象的多方向多尺度融合边缘检测方法
SAR图象
边缘检测
融合
多方向
多尺度
快速多特征金字塔的尺度目标跟踪方法
目标跟踪
相关滤波
尺度自适应
快速特征金字塔
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多尺度特征图融合的目标检测
来源期刊 中国图象图形学报 学科 工学
关键词 计算机视觉 深度学习 卷积神经网络 目标检测 多尺度特征图
年,卷(期) 2019,(11) 所属期刊栏目 图像分析和识别
研究方向 页码范围 1918-1931
页数 14页 分类号 TP391
字数 9931字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘万军 辽宁工程技术大学软件学院 181 1681 19.0 33.0
2 姜文涛 辽宁工程技术大学软件学院 23 127 6.0 10.0
3 张驰 辽宁工程技术大学研究生院 4 2 1.0 1.0
4 张晟翀 4 11 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (29)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (9)
二级引证文献  (0)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计算机视觉
深度学习
卷积神经网络
目标检测
多尺度特征图
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导