钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
一般工业技术期刊
\
中国图象图形学报期刊
\
多尺度特征图融合的目标检测
多尺度特征图融合的目标检测
作者:
刘万军
姜文涛
张晟翀
张驰
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
计算机视觉
深度学习
卷积神经网络
目标检测
多尺度特征图
摘要:
目的 自然场景图像中,特征提取的质量好坏是决定目标检测性能高低的关键因素.大多数检测算法都是利用卷积神经网络(CNN)强大的学习能力来获得目标的先验知识,并根据这些知识进行目标检测.卷积神经网络的低层次特征缺乏特征的代表性,而高层次的特征则对小尺度目标的监测能力弱.方法 利用原始SSD(single shot multiBox detector)网络提取特征图,通过1×1卷积层将提取的特征图统一为256维;通过反卷积操作增加自顶向下特征图的空间分辨率;通过对应元素相加的操作,将两个方向的特征图进行融合.将融合后的特征图采用3×3的卷积核进行卷积操作,减小特征图融合后的混叠效应.根据以上步骤构建具有较强语义信息的特征图,同时保留原有特征图的细节信息;对预测框进行聚合,利用非极大抑制(NMS)实现最终的检测效果.结果 在PASCALVOC 2007和PASCAL VOC 2012数据集上进行实验测试,该模型的mAP(mean average precision)为78.9%和76.7%,相对于经典的SSD算法,分别提高了1.4%和0.9%;此外,本文方法在检测小尺度目标时相较于经典SSD模型mAP提升了8.3%.结论 提出了一种多尺度特征图融合的目标检测算法,以自顶向下的方式扩展了语义信息,构造了高强度语义特征图用于实现精确目标检测.
暂无资源
收藏
引用
分享
推荐文章
引入多尺度特征图融合的人脸关键点检测网络
深度学习
人脸关键点检测
热度图融合
关键点热度图
基于特征融合的多尺度窗口产品外观检测方法
机器视觉
质量检测
特征融合
多尺度滑动窗口
支持向量机
一种SAR图象的多方向多尺度融合边缘检测方法
SAR图象
边缘检测
融合
多方向
多尺度
快速多特征金字塔的尺度目标跟踪方法
目标跟踪
相关滤波
尺度自适应
快速特征金字塔
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
多尺度特征图融合的目标检测
来源期刊
中国图象图形学报
学科
工学
关键词
计算机视觉
深度学习
卷积神经网络
目标检测
多尺度特征图
年,卷(期)
2019,(11)
所属期刊栏目
图像分析和识别
研究方向
页码范围
1918-1931
页数
14页
分类号
TP391
字数
9931字
语种
中文
DOI
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
刘万军
辽宁工程技术大学软件学院
181
1681
19.0
33.0
2
姜文涛
辽宁工程技术大学软件学院
23
127
6.0
10.0
3
张驰
辽宁工程技术大学研究生院
4
2
1.0
1.0
4
张晟翀
4
11
2.0
3.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(28)
共引文献
(29)
参考文献
(6)
节点文献
引证文献
(2)
同被引文献
(9)
二级引证文献
(0)
1998(3)
参考文献(0)
二级参考文献(3)
2005(1)
参考文献(0)
二级参考文献(1)
2007(2)
参考文献(0)
二级参考文献(2)
2008(1)
参考文献(0)
二级参考文献(1)
2010(2)
参考文献(1)
二级参考文献(1)
2011(1)
参考文献(0)
二级参考文献(1)
2012(3)
参考文献(0)
二级参考文献(3)
2013(1)
参考文献(1)
二级参考文献(0)
2014(5)
参考文献(0)
二级参考文献(5)
2015(2)
参考文献(0)
二级参考文献(2)
2016(2)
参考文献(0)
二级参考文献(2)
2017(8)
参考文献(1)
二级参考文献(7)
2018(2)
参考文献(2)
二级参考文献(0)
2019(1)
参考文献(1)
二级参考文献(0)
2019(1)
参考文献(1)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
2020(2)
引证文献(2)
二级引证文献(0)
研究主题发展历程
节点文献
计算机视觉
深度学习
卷积神经网络
目标检测
多尺度特征图
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
主办单位:
中国科学院遥感与数字地球研究所
中国图象图形学学会
北京应用物理与计算数学研究所
出版周期:
月刊
ISSN:
1006-8961
CN:
11-3758/TB
开本:
大16开
出版地:
北京9718信箱
邮发代号:
82-831
创刊时间:
1996
语种:
chi
出版文献量(篇)
5906
总下载数(次)
17
期刊文献
相关文献
1.
引入多尺度特征图融合的人脸关键点检测网络
2.
基于特征融合的多尺度窗口产品外观检测方法
3.
一种SAR图象的多方向多尺度融合边缘检测方法
4.
快速多特征金字塔的尺度目标跟踪方法
5.
基于卷积特征融合的通用目标检测方法
6.
融合红外特征的可见光图像目标检测算法研究
7.
多特征融合的尺度自适应KCF人脸跟踪
8.
基于多尺度特征融合模型的遥感图像建筑物分割
9.
基于粒子滤波的目标图像多特征融合跟踪方法
10.
基于多特征信息融合粒子滤波的红外目标跟踪
11.
多尺度融合背景与目标先验的显著性目标检测
12.
基于多尺度融合SSD的小目标检测算法
13.
多特征融合与尺度估计相结合的目标跟踪算法
14.
基于多尺度谱峭度图的遥测振动信号异常检测
15.
基于多尺度协同的人头检测方法
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
中国图象图形学报2022
中国图象图形学报2021
中国图象图形学报2020
中国图象图形学报2019
中国图象图形学报2018
中国图象图形学报2017
中国图象图形学报2016
中国图象图形学报2015
中国图象图形学报2014
中国图象图形学报2013
中国图象图形学报2012
中国图象图形学报2011
中国图象图形学报2010
中国图象图形学报2009
中国图象图形学报2008
中国图象图形学报2007
中国图象图形学报2006
中国图象图形学报2005
中国图象图形学报2004
中国图象图形学报2003
中国图象图形学报2002
中国图象图形学报2001
中国图象图形学报2000
中国图象图形学报1999
中国图象图形学报1998
中国图象图形学报2019年第9期
中国图象图形学报2019年第8期
中国图象图形学报2019年第7期
中国图象图形学报2019年第6期
中国图象图形学报2019年第5期
中国图象图形学报2019年第4期
中国图象图形学报2019年第3期
中国图象图形学报2019年第2期
中国图象图形学报2019年第12期
中国图象图形学报2019年第11期
中国图象图形学报2019年第10期
中国图象图形学报2019年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号