基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
城市短时交通流预测可以帮助人们选择出行最优路线,提高出行效率,其研究在交通拥堵日益严重的今天十分必要.受天气等多种因素影响,短时交通流的精确预测比较困难,为改善短时交通流预测的精度,本文提出了一种基于自适应模糊推理系统(ANFIS)的混合模型.该混合模型用周期性知识模型及残差数据驱动ANFIS模型集成得到.为验证所提出的混合模型的性能,与倒向传播神经网络(BPNN)模型和普通ANFIS模型进行对比.实验结果证明混合模型在交通流预测方面有更好的适用性和准确度.
推荐文章
短时交通流量预测方法
城市交通
短时交通流量
预测
智能交通系统
基于深度学习的短时交通流预测
交通流预测
深度学习
短时交通流
支持向量回归
基于模糊神经网络的短时交通流预测方法研究
模糊神经网络
短时交通流
预测方法
短时交通流智能预测方法的研究
短时交通流
预测
模型
智能
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ANFIS混合模型的短时交通流预测
来源期刊 计算机系统应用 学科
关键词 交通流预测 周期性提取 自适应模糊推理系统(ANFIS) 反向传播算法 最小二乘法
年,卷(期) 2019,(6) 所属期刊栏目 研究开发
研究方向 页码范围 247-253
页数 7页 分类号
字数 3427字 语种 中文
DOI 10.15888/j.cnki.csa.006906
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 颜秉洋 山东建筑大学信息与电气工程学院 1 1 1.0 1.0
2 唐敏佳 山东建筑大学信息与电气工程学院 1 1 1.0 1.0
3 周长庚 山东建筑大学信息与电气工程学院 1 1 1.0 1.0
4 李银萍 山东建筑大学信息与电气工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (58)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(6)
  • 参考文献(2)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通流预测
周期性提取
自适应模糊推理系统(ANFIS)
反向传播算法
最小二乘法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导