基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Pedestrian detection is a critical challenge in the field of general object detection,the performance of object detection has advanced with the development of deep learning.However,considerable improvement is still required for pedestrian detection,considering the differences in pedestrian wears,action,and posture.In the driver assistance system,it is necessary to further improve the intelligent pedestrian detection ability.We present a method based on the combination of SSD and GAN to improve the performance of pedestrian detection.Firstly,we assess the impact of different kinds of methods which can detect pedestrians based on SSD and optimize the detection for pedestrian characteristics.Secondly,we propose a novel network architecture,namely data synthesis PS-GAN to generate diverse pedestrian data for verifying the effectiveness of massive training data to SSD detector.Experimental results show that the proposed manners can improve the performance of pedestrian detection to some extent.At last,we use the pedestrian detector to simulate a specific application of motor vehicle assisted driving which would make the detector focus on specific pedestrians according to the velocity of the vehicle.The results establish the validity of the approach.
推荐文章
基于Object Detection API的物流单元货架目标检测
深度学习
物流单元货架
目标检测
Faster R-CNN算法
SSD-MobileNet算法
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
Detection of tyrosine, trace metals and nutrients in cow dung: the environmental significance in soi
Cow dung
Excitation–emission matrix (EEM) spectroscopy
Parallel factor (PARAFAC) modelling
Tyrosine
Trace metals
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Pedestrian detection in driver assistance using SSD and PS-GAN
来源期刊 自主智能(英文) 学科 交通运输
关键词 PEDESTRIAN DETECTION DRIVER ASSISTANCE GAN SSD
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 9-19
页数 11页 分类号 U49
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
PEDESTRIAN
DETECTION
DRIVER
ASSISTANCE
GAN
SSD
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自主智能(英文)
季刊
2630-5046
12 Eu Tong Sen Stree
出版文献量(篇)
26
总下载数(次)
0
总被引数(次)
0
论文1v1指导