基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
核四元数主成分分析(KQPCA)被成功应用于处理非线性四元数信号,然而,核矩阵维数太高使其对角化非常耗时,目前二维形式的KQPCA(2DKQPCA)并没有成功实现.对此,采用基于块处理和并行计算的思想,提出基于块的2DKQPCA(B2DKQPCA),实现真正意义上的2DKQPCA.基于时间复杂度、应用性能和分块矩阵应为四元数Hermitian矩阵的综合考虑,B2DKQPCA重点处理主对角线、反对角线和主对角线旁3个方向的小块.然后,结合B2DKQPCA与RGB-D图像四元数表示方法,将B2DKQPCA应用于RGB-D目标识别领域.在2个公开库上的实验结果表明,提出的基于列向B2DKQPCA的RGB-D识别算法优于现有基于主成分分析算法和基于卷积神经网络的一些算法.
推荐文章
基于二维主成分分析的图像特征提取研究
二维主成分分析
特征提取
人脸识别
基于两方向二维主成分分析木材识别的研究
(2D)2FPCA
2DPCA
2DFLD
木材体视图
识别率
改进的二维主成分分析的人脸识别新算法
二维主成分分析
人脸识别
改进的感知哈希技术
多角度旋转
图像特征提取
角度自矫正
基于测地距离的核主成分分析方法
测地距离
核主成分分析
特征提取
数据分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于块的二维核四元数主成分分析
来源期刊 北京邮电大学学报 学科 工学
关键词 核主成分分析 四元数 彩色图像 RGB-D目标识别
年,卷(期) 2019,(1) 所属期刊栏目 论文
研究方向 页码范围 53-60
页数 8页 分类号 TN911.22
字数 语种 中文
DOI 10.13190/j.jbupt.2018-045
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 苏庆堂 鲁东大学信息与电气工程学院 35 235 7.0 15.0
2 陈北京 南京信息工程大学江苏省网络监控工程中心 20 87 7.0 8.0
11 范春年 南京信息工程大学江苏省网络监控工程中心 16 123 6.0 11.0
15 杨建浩 南京信息工程大学计算机与软件学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (14)
参考文献  (19)
节点文献
引证文献  (1)
同被引文献  (9)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(5)
  • 参考文献(3)
  • 二级参考文献(2)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
核主成分分析
四元数
彩色图像
RGB-D目标识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京邮电大学学报
双月刊
1007-5321
11-3570/TN
大16开
北京海淀区西土城路10号
2-648
1960
chi
出版文献量(篇)
3472
总下载数(次)
19
总被引数(次)
26644
论文1v1指导