基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对主成分分析(PCA)假设数据服从高斯分布的条件以及只能处理特征之间线性关系的不足,提出一种基于Yeo-Johnson变换和最大信息系数(MIC)的PCA特征抽取算法,命名为YJ-MICPCA.通过Yeo-Johnson变换改善原始数据分布,使其近似服从高斯分布,并将PCA中计算协方差矩阵转化为计算MIC矩阵的平方,使其也能处理特征间存在的非线性关系.以UCI机器学习数据库中的11个数据集为实验对象,采用支持向量机、朴素贝叶斯模型、k近邻算法这3种分类器,比较了YJ-MICPCA与PCA及其他常用非线性降维方法LLE、Isomap、MSD、KPCA的降维效果和分类精度,结果表明YJ-MICPCA总体上优于其他几种算法.
推荐文章
一种基于主成分分析的钞票识别算法
PCA
K-L变换
特征空间
钞票识别
最小距离
一种改进的顶点成分分析端元提取算法
端元提取
顶点成分分析
纯净像元指数
正交向量
蚀变信息
一种基于主成分分析的高光谱图像波段选择算法
主成分分析
波段选择
高光谱图像
贝叶斯分类
一种鲁棒的概率主成分分析方法
主成分
鲁棒
概率主成分分析
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的主成分分析特征抽取算法:YJ-MICPCA
来源期刊 武汉科技大学学报(自然科学版) 学科 数学
关键词 主成分分析 最大信息系数 Yeo-Johnson变换 特征抽取 降维 分类
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 220-226
页数 7页 分类号 O213|O235
字数 4998字 语种 中文
DOI 10.3969/j.issn.1674-3644.2019.03.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗幼喜 湖北工业大学理学院 31 146 5.0 11.0
2 谢昆明 湖北工业大学理学院 3 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (5)
参考文献  (15)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(4)
  • 参考文献(4)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
主成分分析
最大信息系数
Yeo-Johnson变换
特征抽取
降维
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
武汉科技大学学报(自然科学版)
双月刊
1674-3644
42-1608/N
湖北武汉青山区
chi
出版文献量(篇)
2627
总下载数(次)
1
总被引数(次)
16881
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导