基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
手势识别在非语言交流和人机交互中有着十分重要作用,为了实现手势识别的准确率与鲁棒性.本文提出用YCbCr色彩空间检测肤色对输入的图像分割出感兴趣的手势区域,然后再通过深度学习的方法训练出手势识别的模型.该方法针对五种特定手(stop、ok、punch、yes、good)进行自动手势识别.使用Kears框架实现卷积神经网络.通过实验证明,该方法对输入的五种手势识别准确率达到94.6%,并且具有一定的鲁棒性.
推荐文章
手势识别中的肤色分割方法研究
手势识别
肤色分割
颜色通道
HCrCg
基于语义分割与迁移学习的手势识别
语义分割
迁移学习
手势识别
卷积神经网络
基于深度学习的手势识别算法设计
深度学习
卷积神经网络
实时手势识别
高效性
基于肤色和运动检测技术的单目视觉手势分割
单目视觉
手势分割
运动检测
肤色检测
数学形态学
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于肤色分割与深度学习的手势识别
来源期刊 数据通信 学科 工学
关键词 肤色模型 卷积神经网络 手势识别 准确率
年,卷(期) 2019,(5) 所属期刊栏目 技术交流
研究方向 页码范围 30-33
页数 4页 分类号 TP391.4
字数 3215字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑紫微 宁波大学通信技术研究所 53 190 8.0 10.0
2 郝骏 宁波大学通信技术研究所 4 1 1.0 1.0
3 杨洋 宁波大学通信技术研究所 5 1 1.0 1.0
4 孙兹昂 宁波大学通信技术研究所 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (60)
共引文献  (73)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(10)
  • 参考文献(0)
  • 二级参考文献(10)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
肤色模型
卷积神经网络
手势识别
准确率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据通信
双月刊
1002-5057
11-2841/TP
大16开
北京市海淀区学院路40号
82-891
1980
chi
出版文献量(篇)
2014
总下载数(次)
6
总被引数(次)
7821
论文1v1指导