基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
论述了一种改进的鱼群算法,利用其全局寻优能力优化BP神经网络的权值和阈值,形成一套基于改进鱼群算法优化神经网络的故障诊断方法(ADAFSA-BP).通过试验采集和处理轴承故障信息,应用GA-BP,SF-LA-BP和ADAFSA-BP对试验数据进行处理和对比分析,结果表明:ADAFSA-BP不仅加快了神经网络的收敛速度,而且在诊断精度上有了较大提高.
推荐文章
基于改进深度卷积神经网络的轴承故障诊断
风电机组
轴承
故障诊断
深度卷积神经网络
基于改进的RBF神经网络的滚动轴承故障诊断
RBF神经网络
减聚类算法
故障诊断
滚动轴承
基于神经网络的车辆轴承故障诊断技术
铁道车辆
轴承
故障诊断
神经网络
基于特征选择与概率神经网络的轴承故障诊断研究
航空发动机
轴承
故障诊断
特征提取
概率神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进鱼群算法优化神经网络的轴承故障诊断研究
来源期刊 轴承 学科 工学
关键词 滚动轴承 故障诊断 鱼群算法 BP神经网络
年,卷(期) 2019,(5) 所属期刊栏目 测量与仪器
研究方向 页码范围 44-48
页数 5页 分类号 TH133.33|TP183
字数 2957字 语种 中文
DOI 10.19533/j.issn1000-3762.2019.05.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 魏秀业 中北大学机械工程学院 28 357 10.0 18.0
3 张宁 中北大学机械工程学院 11 7 2.0 2.0
9 郭小勇 中北大学机械工程学院 2 2 1.0 1.0
13 徐晋宏 中北大学机械工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (89)
共引文献  (246)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (30)
二级引证文献  (2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(11)
  • 参考文献(0)
  • 二级参考文献(11)
2009(10)
  • 参考文献(1)
  • 二级参考文献(9)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(10)
  • 参考文献(0)
  • 二级参考文献(10)
2013(5)
  • 参考文献(3)
  • 二级参考文献(2)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
滚动轴承
故障诊断
鱼群算法
BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
轴承
月刊
1000-3762
41-1148/TH
大16开
河南省洛阳市吉林路
36-17
1958
chi
出版文献量(篇)
4658
总下载数(次)
6
总被引数(次)
20623
论文1v1指导