基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决手机壳表面缺陷检测采用人工目测法,检测效率低且漏检率高的问题,采用基于机器视觉的手机壳表面缺陷检测方法,实现产品缺陷的自动化检测.该检测算法采用八方向的各向异性高斯方向导数滤波器对图像进行卷积滤波,并做归一化处理;利用滤波结果图的直方图确定自适应阈值,并进行阈值分割;对图像进行细化后通过划痕缺陷长度特征进行缺陷的提取.实验结果表明,该划痕缺陷检测算法能够实现长度0.5 mm以上的划痕缺陷的准确检测,检测效率高,满足企业的实际需求.
推荐文章
基于机器视觉的纽扣电池表面划痕检测方法研究
划痕检测
扣式电池
模板匹配
图像处理
机器视觉
基于机器视觉的FPC表面缺陷智能检测系统
表面缺陷检测系统
机器视觉
柔性印制电路板
自动化检测
基于机器视觉的带钢表面缺陷检测研究进展
热轧带钢
表面缺陷
检测方法
机器视觉
基于机器视觉的零部件表面缺陷检测方法研究
机器视觉
零部件表面缺陷
差影法
灰度计算
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器视觉的手机壳表面划痕缺陷检测
来源期刊 机械制造与自动化 学科 工学
关键词 手机壳 划痕缺陷 各向异性高斯方向导数滤波器 自适应阈值
年,卷(期) 2019,(1) 所属期刊栏目 电气与自动化
研究方向 页码范围 160-163,189
页数 5页 分类号 TP391.41
字数 4094字 语种 中文
DOI 10.19344/j.cnki.issn1671-5276.2019.01.042
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陆永华 南京航空航天大学机电学院 55 340 10.0 15.0
2 叶明 南京航空航天大学机电学院 49 284 8.0 14.0
3 王武 南京航空航天大学机电学院 1 8 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (96)
共引文献  (84)
参考文献  (12)
节点文献
引证文献  (8)
同被引文献  (21)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(4)
  • 参考文献(0)
  • 二级参考文献(4)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(10)
  • 参考文献(0)
  • 二级参考文献(10)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(20)
  • 参考文献(2)
  • 二级参考文献(18)
2013(9)
  • 参考文献(2)
  • 二级参考文献(7)
2014(7)
  • 参考文献(3)
  • 二级参考文献(4)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(5)
  • 参考文献(3)
  • 二级参考文献(2)
2019(6)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(6)
  • 二级引证文献(0)
2019(6)
  • 引证文献(6)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
手机壳
划痕缺陷
各向异性高斯方向导数滤波器
自适应阈值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械制造与自动化
双月刊
1671-5276
32-1643/TH
大16开
江苏省南京市珠江路280号1903室
28-291
1972
chi
出版文献量(篇)
6602
总下载数(次)
23
总被引数(次)
27288
论文1v1指导