基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来卷积神经网络(CNN)在人工智能领域备受关注,被越来越多应用到实际生产中.为了较好地实现工程应用,需要将算法固化到嵌入式平台上.由于卷积神经网络的数据计算并行度高、计算量大,现场可编程门阵列成为对其进行硬件加速的重要工具.本文基于Xilinx ZYNQ ZC706设计实现了卷积神经网络硬件加速的通用平台,可以满足不同卷积神经网络算法模块实现硬件加速的需求.
推荐文章
基于FPGA的卷积神经网络硬件加速器设计空间探索研究
卷积神经网络硬件加速器
设计空间探索
细粒度流水线
基于FPGA的卷积神经网络加速器设计与实现
卷积神经网络
现场可编程门阵列
加速器
有限资源
稀疏卷积神经网络加速器设计
稀疏卷积神经网络
阵列运算
加速器
高能效比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 ZYNQ的卷积神经网络硬件加速通用平台设计
来源期刊 单片机与嵌入式系统应用 学科 工学
关键词 ZC706 卷积神经网络 硬件加速 FPGA ZYNQ
年,卷(期) 2019,(3) 所属期刊栏目 专题论述
研究方向 页码范围 3-6,9
页数 5页 分类号 TP391
字数 2882字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 应三丛 四川大学计算机学院 18 86 5.0 9.0
2 冯光顺 四川大学计算机学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (418)
参考文献  (5)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1962(2)
  • 参考文献(0)
  • 二级参考文献(2)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ZC706
卷积神经网络
硬件加速
FPGA
ZYNQ
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
单片机与嵌入式系统应用
月刊
1009-623X
11-4530/V
大16开
北京海淀区学院路37号《单片机与嵌入式系统应用》杂志社
2-765
2001
chi
出版文献量(篇)
7244
总下载数(次)
21
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导