作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在处理不确定问题中,生成模糊决策树是一种常用的方法.其算法主要包含2个步骤,一个是树的生成条件,主要是确定扩展属性的选择标准,并以此为核心得到生成模糊决策树的启发式算法.另一个则是树的终止条件,否则会造成树的过度拟合的情况.目前,典型的算法中通常利用粗糙模糊依赖度作为选择扩展属性的依据,但是这个依赖函数不具备单调性,从而导致算法有不收敛的可能,基于这个问题,给出了模糊度的定义,重新定义了模糊依赖度和模糊粗糙度,选择模糊依赖度最大的条件属性作为根结点;然后,使用模糊粗糙度作为叶子结点的终止条件;最后,通过实例说明了整个模糊决策树的归纳过程.
推荐文章
改进的决策树生成算法及条件决策表的创建
决策表
决策树
信息熵
条件决策表
测试优化
基于决策支持度的决策树生成算法
决策树
信息系统
决策支持度
基于决策树C4.5集成算法的图像自动标注
C4.5算法
集成学习
修正矩阵
图像标注
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于模糊度的决策树生成算法
来源期刊 云南民族大学学报(自然科学版) 学科 工学
关键词 模糊粗糙集 模糊决策树 模糊依赖度 扩展属性 模糊粗糙度
年,卷(期) 2019,(3) 所属期刊栏目 信息与计算机科学
研究方向 页码范围 285-288
页数 4页 分类号 TP181
字数 2870字 语种 中文
DOI 10.3969/j.issn.1672-8513.2019.03.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗秋瑾 云南财经大学统计与数学学院 9 15 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (7)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
模糊粗糙集
模糊决策树
模糊依赖度
扩展属性
模糊粗糙度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
云南民族大学学报(自然科学版)
双月刊
1672-8513
53-1192/N
大16开
中国昆明市一二·一大街134号
1992
chi
出版文献量(篇)
2286
总下载数(次)
5
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导