作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
最小二乘支持向量机(LSSVM)被证实是一种有效的信用评估方法,然而,传统的交叉验证和网格方法通常得不到最优参数.为了解决这个问题,作者提出了一种改进的灰狼优化算法(IGWO),该算法能非线性地调整收敛因子,并能自适应调整a狼、β狼和δ狼对ω狼的影响.然后,提出了一种用IGWO来优化LSSVM参数的方法IGWO-LSSVM,并将其应用于信用评估中.在公开的德国和澳大利亚真实信用数据集上,IGWO-LSSVM较传统的K近邻、朴素贝叶斯、决策树、支持向量机和LSSVM等信用评估方法均有明显的提升,表明IGWO-LSSVM是一种有效的信用评估方法.
推荐文章
最小二乘支持向量机的参数优化算法研究
最小二乘支持向量机
参数优化
水下焊接
熔深预测
基于遗传算法和最小二乘支持向量机可靠性分配
可靠性分配
遗传算法
最小二乘支持向量机
逆向思维
三角模糊数
基于免疫优化多输出最小二乘支持向量机及其应用
免疫优化
最小二乘支持向量机
污水生化处理
语音情感识别
最小二乘支持向量机交通事件检测算法
交通工程
事件检测
最小二乘支持向量机
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于灰狼优化算法和最小二乘支持向量机的信用评估
来源期刊 成都理工大学学报(自然科学版) 学科 工学
关键词 灰狼优化算法 最小二乘支持向量机 信用评估 金融风险
年,卷(期) 2019,(4) 所属期刊栏目 计算机科学与技术
研究方向 页码范围 507-512
页数 6页 分类号 TP181|F830.5
字数 5303字 语种 中文
DOI 10.3969/j.issn.1671-9727.2019.04.11
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (7)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
灰狼优化算法
最小二乘支持向量机
信用评估
金融风险
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
成都理工大学学报(自然科学版)
双月刊
1671-9727
51-1634/N
大16开
成都市二仙桥东三路1号
62-24
1960
chi
出版文献量(篇)
2541
总下载数(次)
5
总被引数(次)
34042
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导