基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对鲁棒非负矩阵分解应用于高光谱图像处理时,存在对初始值的敏感性,求解目标函数时易陷入局部最优的缺点,提出基于樽海鞘群体优化鲁棒非负矩阵分解的高光谱图像解混算法.该算法基于鲁棒线性混合模型,在RNMF框架下,采用樽海鞘群体算法取代乘法迭代策略,以增强算法全局搜索能力,在约束空间内随机搜索满足目标函数的全局最优解,可有效地完成非线性高光谱图像解混.仿真数据与真实遥感数据实验结果表明,本文算法在处理高光谱图像时,能够有效地避免RNMF算法易陷入局部最优解的局限性,具有更好的解混性能.
推荐文章
基于最小体积约束的非负矩阵分解模型的高光谱解混算法探究
高光谱图像中混合像元分解
约束非负矩阵分解方法
MVC-NMF
基于差分搜索的高光谱图像解混算法
高光谱图像解混
差分搜索算法
盲源分离
丰度非负约束
丰度和为一约束
互信息
基于约束非负矩阵分解的高光谱图像解混快速算法
非负矩阵分解
交替方向乘子法
线性光谱解混
最小体积约束
基于樽海鞘群算法的图像匹配方法
图像匹配
方向梯度直方图
全局最优
群智能优化算法
樽海鞘群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于樽海鞘群体优化非负矩阵分解的高光谱图像解混算法
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 高光谱图像 非线性解混 鲁棒线性混合模型 群智能优化 樽海鞘群体算法
年,卷(期) 2019,(2) 所属期刊栏目 图像与视觉
研究方向 页码范围 315-323
页数 9页 分类号 TP751
字数 7022字 语种 中文
DOI 10.3724/SP.J.1089.2019.17189
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈雷 天津大学精密仪器与光电子工程学院 50 248 10.0 13.0
5 郭艳菊 河北工业大学电子信息工程学院 32 141 7.0 10.0
6 贾志成 河北工业大学电子信息工程学院 58 320 11.0 15.0
7 刘森 河北工业大学电子信息工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (13)
参考文献  (23)
节点文献
引证文献  (2)
同被引文献  (12)
二级引证文献  (1)
1951(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(5)
  • 参考文献(2)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(5)
  • 参考文献(3)
  • 二级参考文献(2)
2012(7)
  • 参考文献(3)
  • 二级参考文献(4)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
高光谱图像
非线性解混
鲁棒线性混合模型
群智能优化
樽海鞘群体算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
总被引数(次)
94943
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导