基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决蚁群算法在移动机器人路径规划应用中的不足,通过改进启发函数和信息素挥发因子来提升算法的性能.首先,利用栅格法的便捷性对环境进行建模,对每个栅格进行标记,使蚁群从初始栅格移动到目标栅格进行路径搜索;然后,构造新的启发函数以提高蚂蚁搜索的目的性及算法的运算速度;最后,使挥发因子自适应变化,保证蚂蚁在全面地搜索路径时也能够快速收敛.多次实验的结果证明,在有较多障碍物的情况下,改进的算法能够帮助移动机器人快速寻找到最优路径.
推荐文章
基于改进蚁群算法的移动机器人路径规划研究
移动机器人路径规划
新型蚁群算法
数学模型
收敛速度
局部最优
改进蚁群算法在移动机器人路径规划中的研究
蚁群算法
移动机器人
路径规划
最优路径
基于改进蚁群算法的移动机器人路径规划
移动机器人
路径规划
蚁群算法
信息素更新
蚁群算法及其在移动机器人路径规划中的应用
蚁群算法
路径规划
移动机器人
智能计算
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进蚁群算法的移动机器人路径规划
来源期刊 南京邮电大学学报(自然科学版) 学科 工学
关键词 蚁群算法 机器人 自适应 启发函数
年,卷(期) 2019,(6) 所属期刊栏目 计算机与自动控制
研究方向 页码范围 73-78
页数 6页 分类号 TP181
字数 3550字 语种 中文
DOI 10.14132/j.cnki.1673-5439.2019.06.011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (121)
共引文献  (271)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(12)
  • 参考文献(0)
  • 二级参考文献(12)
2011(14)
  • 参考文献(1)
  • 二级参考文献(13)
2012(11)
  • 参考文献(0)
  • 二级参考文献(11)
2013(15)
  • 参考文献(1)
  • 二级参考文献(14)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(11)
  • 参考文献(1)
  • 二级参考文献(10)
2017(9)
  • 参考文献(3)
  • 二级参考文献(6)
2018(6)
  • 参考文献(4)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
蚁群算法
机器人
自适应
启发函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京邮电大学学报(自然科学版)
双月刊
1673-5439
32-1772/TN
大16开
南京市亚芳新城区文苑路9号
1960
chi
出版文献量(篇)
2234
总下载数(次)
13
总被引数(次)
14649
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导