针对BP(Back Propagation)神经网络在进行故障诊断时准确度低、收敛速度慢等问题,设计了一种基于误差指针改进的BP(Improved Back Propagation,IBP)神经网络,并通过遗传算法(Genetic Algorithm,GA)对这种改进后的神经网络进行优化,从而建立了基于GA-IBP神经网络的故障诊断模型.使用典型三相逆变电路中IGBT开路故障数据作为样本,对所设计的模型进行了仿真分析.结果表明:改进后的网络模型收敛速度优于典型BP神经网络和基于GA算法优化的典型BP神经网络,故障诊断精度分别提高15%和4.5%.