基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了有效地利用大数据中的无类别标签样本,将最小二乘支持向量机的思想和方法运用到半监督学习中,利用有类别标签和无类别标签样本构造支持向量机模型,通过Lagrange数乘法将其转化为一个线性规划问题,得到了一种适用于大数据的最小二乘半监督支持向量机.该算法有效地提高了支持向量机的测试准确率,具有较好的推广能力.
推荐文章
最小二乘Littlewood-Paley小波支持向量机
支持向量机
核函数
支持向量核函数
Littlewood-Paley小波
LS-LPWSVM
最小二乘支持向量机的参数优化算法研究
最小二乘支持向量机
参数优化
水下焊接
熔深预测
稀疏最小二乘支持向量机及其应用研究
最小二乘支持向量机
核偏最小二乘辨识
智能建模
基于MapReduce的最小二乘支持向量机回归模型
最小二乘支持向量机
MapReduce编程模式
局部多模型方法
加速比
可扩展性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 适用于大数据的最小二乘半监督支持向量机
来源期刊 河南大学学报(自然科学版) 学科 工学
关键词 大数据 最小二乘支持向量机 半监督学习机 线性规划
年,卷(期) 2019,(6) 所属期刊栏目 数学研究
研究方向 页码范围 745-750
页数 6页 分类号 O235|TP181
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
大数据
最小二乘支持向量机
半监督学习机
线性规划
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南大学学报(自然科学版)
双月刊
1003-4978
41-1100/N
大16开
河南省开封市明伦街85号
36-27
1934
chi
出版文献量(篇)
2535
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导