基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目标快速运动、遮挡等复杂视频场景中目标跟踪鲁棒性差和跟踪精度低的问题,该文提出一种基于多层卷积特征的自适应决策融合目标跟踪算法(ASFTT).首先提取卷积神经网络(CNN)中帧图像的多层卷积特征,避免网络单层特征表征目标信息不全面的缺陷,增强算法的泛化能力;使用多层特征计算帧图像相关性响应,提高算法的跟踪精度;最后该文使用自适应决策融合算法将所有响应中目标位置决策动态融合以定位目标,融合算法综合考虑生成响应的各跟踪器的历史决策信息和当前决策信息,以保证算法的鲁棒性.采用标准数据集OTB2013对该文算法和6种当前主流跟踪算法进行了仿真对比,结果表明该文算法具有更加优秀的跟踪性能.
推荐文章
基于卷积神经网络多层特征融合的目标跟踪
目标跟踪
特征融合
特征表达
目标定位
卷积神经网络
回归模型
自适应模型更新的多特征融合目标跟踪算法
目标跟踪
特征融合
粒子滤波
自适应观测模型
高斯方差
基于双模型融合的自适应目标跟踪算法
目标跟踪
相关滤波
HS直方图
尺度金字塔
自适应融合
自适应融合的长期目标跟踪算法
长期跟踪
稀疏相关滤波
颜色模型
自适应融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多层卷积特征的自适应决策融合目标跟踪算法
来源期刊 电子与信息学报 学科 工学
关键词 目标跟踪 卷积神经网络 相关性响应 决策融合
年,卷(期) 2019,(10) 所属期刊栏目 论文
研究方向 页码范围 2464-2470
页数 7页 分类号 TP391.4
字数 4951字 语种 中文
DOI 10.11999/JEIT180971
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙彦景 中国矿业大学信息与控制工程学院 106 953 16.0 27.0
2 朱绪冉 中国矿业大学信息与控制工程学院 3 7 1.0 2.0
3 王赛楠 中国矿业大学信息与控制工程学院 3 4 1.0 1.0
4 石韫开 中国矿业大学信息与控制工程学院 3 4 1.0 1.0
5 云霄 中国矿业大学信息与控制工程学院 4 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (5)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (4)
二级引证文献  (0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(5)
  • 参考文献(2)
  • 二级参考文献(3)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标跟踪
卷积神经网络
相关性响应
决策融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导