作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对行人光照变化、背景与目标颜色相近以及目标遮挡等复杂环境中,易出现跟踪目标丢失的问题,提出一种融合多特征的Camshift算法与卡尔曼滤波相结合的目标检测跟踪方法.首先,为解决目标跟踪方法需要在初始帧手动选取行人目标的问题,在初始阶段利用梯度直方图特征(HOG)结合支持向量机(SVM)分类器进行行人目标检测;其次,利用欧式距离选取距离图像中心像素坐标最近的行人作为跟踪目标;同时,将行人分为5部分分别提取衣服颜色特征与HOG特征,根据权重进行融合,建立更加鲁棒的目标模型;最后,利用当前帧与前一帧的目标模型相似度设定遮挡阈值,实现Camshift算法与卡尔曼滤波算法的切换,解决目标遮挡问题,保障算法的鲁棒性.将该方法在OTB2013测试集各场景中进行实验,实验结果表明,在提升算法的鲁棒性同时,保障了算法的实时性.
推荐文章
基于多特征融合与粒子滤波的红外弱小目标跟踪方法
红外弱小目标
多特征融合
粒子滤波
目标跟踪
基于粒子滤波的目标图像多特征融合跟踪方法
红外弱小目标
多特征融合
粒子滤波
目标跟踪
红外图像
图像识别
基于多特征信息融合粒子滤波的红外目标跟踪
粒子滤波
纹理特征
多特征融合
目标跟踪
基于多信息融合的多目标跟踪方法研究
计算机视觉
深度学习
多目标跟踪
目标遮挡
双分支网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合多特征的目标检测与跟踪方法
来源期刊 电子测量与仪器学报 学科 工学
关键词 目标检测 目标跟踪 Camshift 卡尔曼滤波 多特征融合
年,卷(期) 2019,(9) 所属期刊栏目 学术论文
研究方向 页码范围 93-99
页数 7页 分类号 TP242|TP391.41
字数 语种 中文
DOI 10.13382/j.jemi.B1902259
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 包本刚 51 174 6.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (116)
共引文献  (273)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(12)
  • 参考文献(0)
  • 二级参考文献(12)
2012(12)
  • 参考文献(0)
  • 二级参考文献(12)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(12)
  • 参考文献(0)
  • 二级参考文献(12)
2015(16)
  • 参考文献(1)
  • 二级参考文献(15)
2016(13)
  • 参考文献(4)
  • 二级参考文献(9)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
目标跟踪
Camshift
卡尔曼滤波
多特征融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量与仪器学报
月刊
1000-7105
11-2488/TN
大16开
北京市东城区北河沿大街79号
80-403
1987
chi
出版文献量(篇)
4663
总下载数(次)
23
总被引数(次)
44770
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导