基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文提出了一种有监督主题模型的SLDA-TC(Supervised LDA-Text Categorization)文本分类方法,引入主题-类别概率分布参数,识别主题-类别的语义信息;提出SLDA-TC-Gibbs主题采样新方法,对每个词的隐含主题采样,只从该词所在文档的同类其它文档中采样,并给出了理论推导;另外,其主题数只需略大于类别数.实验表明,对比LDA-TC(LDA-Text Categorization)和SVM算法,本方法能提高分类精度和时间性能.
推荐文章
基于向量空间模型的多主题Web文本分类方法
向量空间模型
文本分类
多主题
数据挖掘
不平衡数据集上的文本分类特征选择新方法
不平衡数据集
文本分类
特征选择
正类
负类
面向跨语言文本分类与标签推荐的带标签双语主题模型的研究
主题模型
标签
跨语言文本分类
标签推荐
潜在主题
基于LDA-wSVM模型的文本分类研究
文本分类
潜在狄利克雷分布
支持向量机
权重计算
吉普斯抽样
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 有监督主题模型的SLDA-TC文本分类新方法
来源期刊 电子学报 学科 工学
关键词 文本分类 主题模型 隐含Dirichlet分布 吉布斯采样
年,卷(期) 2019,(6) 所属期刊栏目 学术论文
研究方向 页码范围 1300-1308
页数 9页 分类号 TP181
字数 5324字 语种 中文
DOI 10.3969/j.issn.0372-2112.2019.06.017
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (66)
共引文献  (380)
参考文献  (18)
节点文献
引证文献  (1)
同被引文献  (5)
二级引证文献  (0)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(2)
  • 参考文献(1)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(8)
  • 参考文献(1)
  • 二级参考文献(7)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(6)
  • 参考文献(2)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(7)
  • 参考文献(2)
  • 二级参考文献(5)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(6)
  • 参考文献(2)
  • 二级参考文献(4)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本分类
主题模型
隐含Dirichlet分布
吉布斯采样
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导