作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统粒子群优化算法在求解动态优化问题时,种群将逐渐收敛,从而在问题变化后无法进一步寻优,针对上述问题,提出了一种基于动态平衡的多目标粒子群优化算法.采用双种群策略以动态平衡算法的探索能力与开发强度,其中一个子种群在动态调整的网格中运行混沌搜索,确保种群多样性符合要求的同时,能够有效提升搜索的效率.利用快速收缩多目标粒子群算法,对另外的子种群进行计算,收敛到Pareto前沿.通过一组标准测试问题对所提方法进行了验证,实验结果显示所提算法无论在收敛速度还是在优化精度上都优于其它典型多目标进化算法.
推荐文章
基于粒子群算法的钻进参数多目标优化
钻进参数
多目标优化
机械钻速
粒子群
基于自适应学习的多目标粒子群优化算法
粒子群优化
多目标优化
自适应惯性权值
聚类排挤
最优搜索方向学习
自组织多目标粒子群优化算法
多目标粒子群优化
自组织映射
种群分布
精英学习策略
基于动态邻居和变异因子的多目标粒子群算法
动态邻居
多目标优化
粒子群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于动态平衡的多目标粒子群优化算法
来源期刊 微型电脑应用 学科 工学
关键词 动态平衡 混沌 自适应网格 多目标优化 粒子群算法
年,卷(期) 2019,(6) 所属期刊栏目 技术交流
研究方向 页码范围 150-152,155
页数 4页 分类号 TP311
字数 3719字 语种 中文
DOI 10.3969/j.issn.1007-757X.2019.06.047
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张海波 陕西学前师范学院国有资产管理处 9 9 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (72)
共引文献  (155)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(8)
  • 参考文献(0)
  • 二级参考文献(8)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
动态平衡
混沌
自适应网格
多目标优化
粒子群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微型电脑应用
月刊
1007-757X
31-1634/TP
16开
上海市华山路1954号上海交通大学铸锻楼314室
4-506
1984
chi
出版文献量(篇)
6963
总下载数(次)
20
总被引数(次)
28091
论文1v1指导