基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对在初始先验信息缺失时磁性目标滤波跟踪方法发散问题进行研究,本文提出了一种多初值模型的解决框架,并以平方根形式的中心差分卡尔曼滤波器(Square-Root Central Difference Kalman Filter,SRCDKF)为例,结合多初值模型得到了SRCDKF自适应磁性目标跟踪算法.文章首先根据远距离磁偶极子的磁场等效性,建立了多初值滤波跟踪模型,然后基于最大似然选择理论推导了如何从多模型中选择最佳结果,即多初值模型的选择方法,最后以SRCDKF滤波器为滤波单元,得到了基于SRCDKF的自适应磁性目标跟踪算法.经过仿真试验表明:(1)多初值模型建立和选择方法的有效性;(2)基于SRCDKF的自适应磁性目标跟踪算法,在初始位置信息缺失的情况下,能够有效完成对磁性目标的跟踪;(3)以不同滤波器为滤波单元的自适应跟踪算法跟踪试验结果表明,多初值模型的解决框架可解决初值先验未知下的跟踪问题.
推荐文章
基于自适应跟踪窗的红外小目标跟踪方法
红外小目标
游程编码标记
航迹关联
Kalman滤波
自适应跟踪窗
基于自适应分块的视频目标跟踪方法研究
目标跟踪
颜色直方图
自适应分块
Kalman滤波
机动目标自适应跟踪算法研究
信息处理技术
机动目标模型
统计模型
自适应跟踪
模糊自适应机动目标跟踪算法
机动目标跟踪
自适应滤波
卡尔曼滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 初值自适应的磁性目标跟踪方法
来源期刊 电子学报 学科 工学
关键词 磁性目标跟踪 磁偶极子 多初值模型 最大似然选择 自适应跟踪算法
年,卷(期) 2019,(12) 所属期刊栏目 学术论文
研究方向 页码范围 2457-2464
页数 8页 分类号 TM155
字数 5504字 语种 中文
DOI 10.3969/j.issn.0372-2112.2019.12.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周穗华 海军工程大学兵器工程学院 63 233 7.0 11.0
2 戴忠华 海军工程大学兵器工程学院 9 12 2.0 3.0
3 单珊 海军工程大学兵器工程学院 9 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (17)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (6)
二级引证文献  (0)
1975(1)
  • 参考文献(1)
  • 二级参考文献(0)
1977(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
磁性目标跟踪
磁偶极子
多初值模型
最大似然选择
自适应跟踪算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导