基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为改善传统个性化推荐算法精准度不高的问题,使用评论数据作为数据集,先对评论数据作文本预处理和特征提取,然后使用LDA主题模型对文本特征数据建模,得到主题词分布,将其作为标签,同时使用LSTM网络作文本分类,通过计算得到好评率.最后把用户需求和标签利用潜在语义标引计算相似度,根据相似度和好评率大小向用户推荐结果.实验结果表明,该方法能够向用户推荐符合其兴趣的个性化需求信息,且准确率高于96%,证明了该推荐算法的有效性.
推荐文章
一种改进的基于协同过滤的个性化推荐算法
普适计算
同过滤
性化推荐
协同过滤的一种个性化推荐算法研究
协同过滤
稀疏矩阵
相似度
个性化推荐
一种基于社区发现的微博个性化推荐算法
微博推荐算法
用户模型
社区发现
效用函数
一种结合主题模型的推荐算法
推荐算法
矩阵分解
隐式狄利克雷分布
KL散度
主题模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种融合LDA主题模型与LSTM网络的个性化推荐算法
来源期刊 软件导刊 学科 工学
关键词 LDA主题模型 LSTM神经网络 个性化推荐算法 潜在语义标引
年,卷(期) 2019,(10) 所属期刊栏目 人工智能
研究方向 页码范围 50-54
页数 5页 分类号 TP312
字数 4108字 语种 中文
DOI 10.11907/rjdk.182905
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙怀远 上海健康医学院医疗器械学院 27 19 2.0 2.0
2 谢润忠 上海理工大学光电信息与计算机工程学院 2 0 0.0 0.0
3 尧婉辰 上海理工大学医疗器械与食品学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (49)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1961(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(3)
  • 参考文献(0)
  • 二级参考文献(3)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(8)
  • 参考文献(1)
  • 二级参考文献(7)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LDA主题模型
LSTM神经网络
个性化推荐算法
潜在语义标引
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导