基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
脐橙瑕疵检测突出问题是脐橙的果梗、脐部与瑕疵难以区分.针对这一问题,提出一种利用深度学习物体检测技术对脐橙的果梗脐部进行检测的算法.该模型以顺序卷积与跳跃式卷积共同提取深度特征;融合注意力机制加强待检测物体位置权重,在权重重分配的特征层上进行多尺度上下层信息融合,使用融合后的特征层进行默认框提取;对训练得到的模型进行模型压缩,进一步提升模型时间性能.实验结果表明,基于该模型能够准确实时识别定位出果梗、脐部不会与瑕疵产生误判,模型检测正确检测率达到90.6%,单幅图片预测时间降低为15 ms.
推荐文章
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
尺度无关的级联卷积神经网络人脸检测算法
级联卷积神经网络
空间金字塔池化
人脸检测
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的脐橙果梗脐部检测算法及应用
来源期刊 计算机应用与软件 学科 工学
关键词 卷积神经网络 脐橙 物体检测 注意力机制
年,卷(期) 2019,(7) 所属期刊栏目 人工智能与识别
研究方向 页码范围 208-212
页数 5页 分类号 TP391.41
字数 3290字 语种 中文
DOI 10.3969/j.issn.1000-386x.2019.07.035
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杜雨亭 中国科学院大学微电子学院 1 0 0.0 0.0
2 李功燕 1 0 0.0 0.0
3 许绍云 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (61)
共引文献  (79)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(11)
  • 参考文献(1)
  • 二级参考文献(10)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(9)
  • 参考文献(2)
  • 二级参考文献(7)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
脐橙
物体检测
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导