基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对非对称局部二值模式(AR-LBP)提取的人脸特征有限,以及协同表示分类(CRC)人脸存在的类间干扰,提出以多层AR-LBP特征及联合韦伯局部描述子(WLD)特征进行补充,并以增加CRC中稀疏性来降低类间干扰.提取人脸图像的多层AR-LBP特征并级联,与从原图像提取的WLD特征级联得到多层AR-LBP与WLD融合特征,采用稀疏增强的协同表示分类(SA-CRC)完成人脸分类.在ORL、Yale和GT公开人脸库上,提出的多层AR-LBP与WLD特征融合算法与AR-LBP特征提取算法、WLD特征提取算法以及多层LBP与HOG特征融合算法相比,识别正确率提高了0.7%~42.6% ;当利用SA-CRC取代CRC后,识别正确率进一步得到提高.
推荐文章
基于完整LBP特征的人脸识别
完整局部二值模式
特征提取
人脸识别
局部二值模式
深度稀疏自编码网络融合多LBP特征用于单样本人脸识别
稀疏自编码
单样本人脸识别
空-频特征
多特征融合
二维离散小波变换
数据库
一种基于改进LBP特征的人脸识别
LBP
人脸识别
特征提取
人脸数据库
基于多种LBP特征集成学习的人脸识别
中心对称局部二进制(CSLBP)
特征点
多特征
K最近邻算法
支持向量机
集成学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多层AR-LBP与WLD特征融合的SA-CRC人脸识别
来源期刊 计算机工程与应用 学科 工学
关键词 非对称局部二值模式(AR-LBP) 韦伯局部描述子(WLD) 协同表示分类(CRC) 稀疏增强的协同表示分类(SA-CRC) 特征提取
年,卷(期) 2019,(14) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 134-141
页数 8页 分类号 TP391.4
字数 5639字 语种 中文
DOI 10.3778/j.issn.1002-8331.1804-0118
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 叶学义 杭州电子科技大学模式识别与信息安全实验室 40 202 8.0 11.0
2 叶枫 杭州电子科技大学模式识别与信息安全实验室 3 9 1.0 3.0
3 罗宵晗 杭州电子科技大学模式识别与信息安全实验室 4 6 2.0 2.0
4 陈泽 杭州电子科技大学模式识别与信息安全实验室 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (50)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非对称局部二值模式(AR-LBP)
韦伯局部描述子(WLD)
协同表示分类(CRC)
稀疏增强的协同表示分类(SA-CRC)
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导