基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在强噪声背景下,滚动轴承非平稳非线性的早期微弱故障信号特征提取较为困难,提出结合变分模态分解(Variational Mode Decomposition,VMD)和同步压缩小波变换(Synchrosqueezing Wavelet Transform,SWT)的分析方法,该方法首先利用最大峭度准则优化VMD参数,使用优化后的参数对故障信号进行VMD分解,再利用峭度准则选择含有有效信息最多的本征模函数(Intrinsic Mode Function,IMF),最后使用SWT对最优IMF进行处理分析,从而提取有效特征频率.对强噪声背景下滚动轴承外圈故障信号、内圈故障信号以及滚动体故障信号进行处理分析,结果表明相比Hilbert包络、SWT等方法,该方法能够从强噪声背景下提取出故障信号频率特征,以此判断滚动轴承的运转状况.同时该方法能够有效重构信号.
推荐文章
基于VMD和对称差分能量算子解调的滚动轴承故障诊断方法
变分模态分解
对称差分能量算子
峭度
滚动轴承
故障诊断
基于参数优化VMD和改进GoogLeNet的滚动轴承故障诊断
滚动轴承;变分模态分解;麻雀搜索算法;卷积神经网络;故障诊断;注意力机制
基于EMD的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解
峭度系数
Hilbert变换
基于VMD与不同包络阶次构造的风电机组滚动轴承故障诊断
风电机组
非平稳信号
计算阶比跟踪(COT)
包络阶次
变分模态分解(VMD)
逆包络阶次谱(RE-SES)
轴承故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于VMD-SWT滚动轴承故障诊断方法研究
来源期刊 汽车实用技术 学科 交通运输
关键词 故障诊断 同步压缩小波变换 故障信号提取 变分模态分解
年,卷(期) 2019,(6) 所属期刊栏目 测试试验
研究方向 页码范围 146-152
页数 7页 分类号 U467
字数 5340字 语种 中文
DOI 10.16638/j.cnki.1671-7988.2019.06.050
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周进群 5 2 1.0 1.0
5 刘义亚 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (157)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (11)
二级引证文献  (0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(11)
  • 参考文献(2)
  • 二级参考文献(9)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
故障诊断
同步压缩小波变换
故障信号提取
变分模态分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
汽车实用技术
半月刊
1671-7988
61-1394/TH
大16开
西安市未央区凤城七路赛高广场1008室
1976
chi
出版文献量(篇)
13181
总下载数(次)
93
总被引数(次)
9850
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导